Open Journal Systems

EARTHQUAKE-INDUCED BUILDING DETECTION BASED ON OBJECT-LEVEL TEXTURE FEATURE CHANGE DETECTION OF MULTI-TEMPORAL SAR IMAGES

Qiang Li, Lixia Gong, Jingfa Zhang

Abstract


The damage of buildings is the major cause of casualties of from earthquakes. The traditional pixel-based earthquake damaged building detection method is prone to be affected by speckle noise. In this paper, an object-based change detection method is presented for the detection of earthquake damage using the synthetic aperture radar (SAR) data. The method is based on object-level texture features of SAR data. Firstly, the principal component analysis is used to transform the optimal texture features into a suitable feature space for extracting the key change. And then, the feature space is clustered by the watershed segmentation algorithm, which introduces the concept of object orientation and carries out the calculation of the difference map at the object level. Having training samples, the classification threshold values for different grade of earthquake damage can be trained, and the detection of damaged building is achieved. The proposed method could visualize the earthquake damage efficiently using the Advanced Land Observing Satellite-1 (ALOS-1) images. Its performance is evaluated in the town of jiegu, which was hit severely by the Yushu Earthquake. The cross-validation results shows that the overall accuracy is significantly higher than TDCD and IDCD.

Keywords


Earthquake Damage Detection; Segment; Synthetic Aperture Radar; PCA; Damage Assessment

Full Text:

PDF