DESIGN OF GEODETIC NETWORKS BASED ON OUTLIER IDENTIFICATION CRITERIA: AN EXAMPLE APPLIED TO THE LEVELING NETWORK
Conteúdo do artigo principal
Resumo
We present a numerical simulation method for designing geodetic networks. The quality criterion considered is based on the power of the test of data snooping testing procedure. This criterion expresses the probability of the data snooping to identify correctly an outlier. In general, the power of the test is defined theoretically. However, with the advent of the fast computers and large data storage systems, it can be estimated using numerical simulation. Here, the number of experiments in which the data snooping procedure identifies the outlier correctly is counted using Monte Carlos simulations. If the network configuration does not meet the reliability criterion at some part, then it can be improved by adding required observation to the surveying plan. The method does not use real observations. Thus, it depends on the geometrical configuration of the network; the uncertainty of the observations; and the size of outlier. The proposed method is demonstrated by practical application of one simulated leveling network. Results showed the needs of five additional observations between adjacent stations. The addition of these new observations improved the internal reliability of approximately 18%. Therefore, the final designed network must be able to identify and resist against the undetectable outliers – according to the probability levels.