AVALIAÇÃO DO TAMANHO DE AMOSTRAS DE TREINAMENTO PARA REDES NEURAIS ARTIFICIAIS NA CLASSIFICAÇÃO SUPERVISIONADA DE IMAGENS UTILIZANDO DADOS ESPECTRAIS E LASER SCANNER

Authors

  • Gabriel Henrique de Almeida Pereira UFPR
  • Jorge Antonio Silva Centeno UFPR

Keywords:

Sensoriamento Remoto, Classificação Digital de Imagens, Redes Neurais Artificiais, Imagens de Alta Resolução Espacial, Laser Scanner

Abstract

Técnicas de Sensoriamento Remoto tem ganhado especial interesse, uma vez que podem ser utilizadas para o monitoramento de sistemas e fenômenos em escala local ou global, de maneira contínua temporal e espacialmente. Redes Neurais Artificias estão entre os métodos que são capazes de trabalhar com grande quantidade de dados, com diversas características e sofrer pouca influência de ruídos. Desta forma, fez-se o uso de Redes Neurais Artificiais com o propósito de classificar dados de sensoriamento remoto. Utilizou-se de dados de alta resolução espacial, como imagens espectrais de aerolevantamento e dados altimétricos Laser Scanner, para a classificação do alvo “árvores”. Com isso, gerou-se RNA especialistas na detecção destes alvos. Os dados utilizados são de uma área densamente urbanizada, onde existe grande variabilidade de cotas e características espectrais. Os resultados mostraram que a classificação utilizando dados espectrais e altimétricos resultaram em melhores classificações, do que a utilização apenas de informações espectrais. Testou-se também a influência do tamanho das amostras de treinamento das Redes Neurais Artificiais, gerando assim uma “curva de aprendizado” das RNA. Percebeu-se que conforme se aumenta o tamanho das amostras de treinamento, existe uma tendência em aumentar a acurácia na classificação dos dados. Os acertos globais foram superiores a 87,5% quando utilizando apenas informação espectral e 97,5% quando utilizando dados espectrais e altimétricos.

Published

2017-07-31

How to Cite

Pereira, G. H. de A., & Centeno, J. A. S. (2017). AVALIAÇÃO DO TAMANHO DE AMOSTRAS DE TREINAMENTO PARA REDES NEURAIS ARTIFICIAIS NA CLASSIFICAÇÃO SUPERVISIONADA DE IMAGENS UTILIZANDO DADOS ESPECTRAIS E LASER SCANNER. Bulletin of Geodetic Sciences, 23(2). Retrieved from https://revistas.ufpr.br/bcg/article/view/52781

Issue

Section

Article