CORRESPONDÊNCIA EFICIENTE DE DESCRITORES SIFT PARA CONSTRUÇÃO DE MAPAS DENSOS DE PONTOS HOMÓLOGOS EM IMAGENS DE SENSORIAMENTO REMOTO
Conteúdo do artigo principal
Resumo
Métodos automáticos de localização de pontos homólogos em imagens digitais baseados em área, combinados com técnicas de crescimento de região, são capazes de produzir uma malha densa e exata de pontos homólogos. Entretanto, o processo
de crescimento de região pode ser interrompido em regiões da imagem, cuja paralaxe no eixo horizontal apresenta variação abrupta. Essa situação geralmente é causada por uma descontinuidade na superfície ou espaço-objeto imageado, tal
como um prédio numa cena urbana ou um paredão de exploração de uma mina a céu aberto. Nesses casos, novos pares de pontos homólogos (sementes) devem ser introduzidos, normalmente por um operador humano, a partir dos quais o processo é reiniciado. Dependendo do tipo da imagem utilizada e da estrutura 3D da região mapeada, a intervenção humana pode ser considerável. Uma alternativa totalmente automatizada em que se combinam as técnicas SIFT (Scale Invariant Feature Transform), pareamento por mínimos quadrados e crescimento de região foi proposta anteriormente pelos autores. O presente trabalho apresenta uma extensão a essa técnica. Basicamente, propõem-se alterações na etapa de correspondência do SIFT, que exploram características de estereogramas produzidos por sensores
aéreos e orbitais. Avaliações experimentais demonstram que as modificações propostas trazem dois tipos de benefícios. Em primeiro lugar, obtém-se um aumento do número de pontos homólogos encontrados, sem aumento correspondente na
proporção de falsas correspondências. Em segundo lugar, a carga computacional é reduzida substancialmente.