Classificação Automatizada: Mapeamento de objetos de coleta seletiva usando inteligência artificial
DOI:
https://doi.org/10.5380/atoz.v12i0.84456Palavras-chave:
Inteligência Artificial, Lixo reciclável, YOLOv5, Detecção de objetos.Resumo
Introdução: A inteligência artificial, especialmente na área de visão computacional, tem se destacado como uma ferramenta poderosa para diversas aplicações, incluindo a classificação de objetos. Neste estudo, desenvolvemos uma pesquisa aplicada que utiliza inteligência artificial para detectar e classificar objetos descartados como lixo em duas categorias principais: papel e metal. Método: A pesquisa se baseou em uma base de dados contendo cerca de 897 imagens de objetos descartados, sendo 448 imagens de papel e 449 imagens de metal. Utilizamos o modelo YOLOv5 (you only look once) para treinar e testar a detecção e classificação dos objetos. O YOLOv5 é conhecido por apresentar resultados promissores nesse tipo de tarefa. Resultados: Os resultados obtidos demonstraram que o modelo YOLOv5 apresentou um desempenho satisfatório na detecção e classificação dos objetos descartados. A precisão média alcançada foi de 0,88. Conclusão: O estudo mostra que o uso da inteligência artificial, por meio do modelo YOLOv5, é eficaz para detectar e classificar objetos descartados em categorias de reciclagem, como papel e metal. Essa abordagem pode contribuir significativamente para aprimorar o processo de coleta seletiva e a gestão de resíduos, promovendo práticas mais sustentáveis e conscientes em relação ao meio ambiente.
Referências
Abdoli, S. (2009). RFID application in municipal solid waste management system. International Journal of Environmental Research, 3(3), 447 7-454. Recuperado de https://ijer.ut.ac.ir/article_98_293c01d4f30bb6fbcc106b7dd5f030f1.pdf
Arebey, M., Hannan, M. A., Basri, H., Begum, R. A., & Abdullah, H. (2011). Integrated technologies for solid waste bin monitoring system. Environmental monitoring and assessment, 177(1-4), 399-408. 10.1007/s10661-010-1642-x
Câmara dos Deputados (2021, 16 de agosto). Brasil perde cerca de R$ 120 bilhões ao ano por não dar destinação adequada ao lixo. Recuperado de https://www.camara.leg.br/radio/programas/537327-brasil-perde-cerca-de-r-12
Chowdhury, B., & Chowdhury, M. U. (2007, December 2-5). RFID-based real-time smart waste management system. Australasian telecommunication networks and applications conference, Christchurch, New Zealand, 175-180. 10.1109/ATNAC.2007.4665232
Costa, B. S., Bernardes, A. C., Pereira, J. V., Zampa, V. H., Pereira, V. A., Matos, G. F., & Silva, A. F. (2018, October). Artificial intelligence in automated sorting in trash recycling. Anais do XV Encontro Nacional de Inteligência Artificial e Computacional - ENIAC, Porto Alegre, RS, Brasil, 15. Recuperado de https://sol.sbc.org.br/index.php/eniac/article/view/4416/4340
Glouche, Y., Sinha, A., & Couderc, P. (2015). A Smart Waste Management with Self-Describing Com-plex Objects. International Journal on Advances in Intelligent Systems, 8(1- 2), 1-16. Recuperado de https://inria.hal.science/hal-01198382
Huh, J. H., Choi, J. H., & Seo, K. (2021). Smart trash bin model design and future for smart city. Applied Sciences, 11(11), 4810. https://doi.org/10.3390/app11114810
Islam, M. S., Arebey, M., Hannan, M. A., & Basri, H. (2012, may 21-22). Overview for solid waste bin monitoring and collection system. International Conference on Innovation Management and Technology Research, 258-262. Recuperado de https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6236399
Karthi, M., Muthulakshmi, V., Priscilla, R., Praveen, P., & Vanisri, K. (2021, September 24-25). Evolution of YOLO-V5 algorithm for object detection: automated detection of library books and performance validation of dataset. International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems - ICSES, 1-6. 10.1109/ICSES52305.2021.9633834
Kasper-Eulaers, M., Hahn, N., Berger, S., Sebulonsen, T., Myrland, Ø., & Kummervold, P. E. (2021). Detecting heavy goods vehicles in rest areas in winter conditions using YOLOv5. Algorithms, 14(114), 1-11. https://doi.org/10.3390/a14040114
Lam, K. N., Huynh, N. H., Ngoc, N. B., Nhu, T. T. H., Thao, N. T., Hao, P. H., ... & Kalita, J. (2021, November 24-26). Using artificial intelligence and IoT for constructing a smart trash bin. International Conference on Future Data and Security Engineering., Singapore. 427-435.
Melinte, D. O., Travediu, A. M., & Dumitriu, D. N. (2020). Deep convolutional neural networks object detector for real-time waste identification. Applied Sciences, 10(20), 1-18. 10.3390/app10207301
Ozdemir, M. E., Ali, Z., Subeshan, B., & Asmatulu, E. (2021). Applying machine learning approach in recycling. Journal of Material Cycles and Waste Management, 23, 855-871. 10.1007/s10163-021-01182-y
Parlikad, A. K., & McFarlane, D. (2007). RFID-based product information in end-of-life decision making. Control engineering practice, 15(11), 1348-1363. https://doi.org/10.1016/j.conengprac.2006.08.008
Swedberg, C. (2008). RFID helps reward consumers for recycling. RFID Journal.
Thomas, V. M. (2008). Environmental implications of RFID. 2008 IEEE International Symposium on Electronics and the Environment, 1–5. https://doi.org/10.1109/ISEE.2008.4562916
Toğaçar, M., Ergen, B., & Cömert, Z. (2020). Waste classification using AutoEncoder network with integrated feature selection method in convolutional neural network models. Measurement, 153, 1-10. https://doi.org/10.1016/j.measurement.2019.107459
Yamashita, R., Nishio, M., Do, R. K. G, & Toashi, K. Convolutional neural networks: an overview and application in radiology. Insights Imaging, 9, 611–629. https://doi.org/10.1007/s13244-018-0639-9
Yang, M., & Thung, G. (2016). Classification of trash for recyclability status. Recuperado de poster_final (stanford.edu)
Yao, J., Qi, J., Zhang, J., Shao, H., Yang, J., & Li, X. (2021). A Real-Time Detection Algorithm for Kiwifruit Defects Based on YOLOv5. Electronics, 10(14). https://doi.org/10.3390/electronics10141711
YOLOv5 (2022). YOLOv5 Documentation. https://docs.ultralytics.com/
Ziouzios, D., Tsiktsiris, D., Baras, N., & Dasygenis, M. (2020). A Distributed Architecture for Smart Recycling Using Machine Learning. Future Internet, 12(9). 10.3390/fi12090141
Downloads
Publicado
Como Citar
Edição
Seção
Licença
A revista AtoZ é um periódico científico de acesso aberto e o copyright dos artigos e da entrevista pertence aos respectivos autores/entrevistados com cessão de direitos para a AtoZ no que diz respeito à inclusão do material publicado (revisado por pares/postprint) em sistemas/ferramentas de indexação, agregadores ou curadores de conteúdo.

Todo o conteúdo da Revista (incluindo-se instruções, política editorial e modelos) está sob uma licença Creative Commons Atribuição 4.0 Não Adaptada, a partir de Outubro de 2020.
Ao serem publicados por esta Revista, os artigos são de livre uso para compartilhar (copiar e redistribuir o material em qualquer suporte ou formato para qualquer fim, mesmo que comercial) e adaptar (remixar, transformar, e criar a partir do material para qualquer fim, mesmo que comercial). É preciso dar o crédito apropriado , prover um link para a licença e indicar se mudanças foram feitas .
A AtoZ não cobra qualquer tipo de taxa para submissão e/ou processamento e/ou publicação de artigos.