Open Journal Systems

Classificação das percepções de stakeholders sobre o futuro do Brasil utilizando aprendizado de máquina

Amauri Ornellas da Silva, Daniele Gonçalves de Toledo Luchetta Raminelli, Bruno Samways dos Santos, Rafael Henrique Palma Lima

Resumo


Este artigo compara cinco técnicas de aprendizado de máquina (AM) para classificar as percepções dos stakeholders quanto ao futuro do Brasil. As técnicas de ML utilizadas foram redes neurais artificiais, k-vizinhos mais próximos, naïve bayes, floresta aleatória e máquinas de vetores de suporte. Eles foram aplicados a um conjunto de dados do Banco Mundial sobre o desenvolvimento do Brasil. O conjunto de dados foi pré-processado e configurado em duas versões diferentes: a primeira continha um subconjunto de atributos selecionados manualmente pelos autores, enquanto a segunda era composta por atributos selecionados usando a abordagem de ganho de informação. Verificou-se que todas as técnicas de ML tiveram melhor desempenho com a segunda versão do conjunto de dados, em que os atributos foram classificados com base no ganho de informação. No entanto, dentro de cada versão do conjunto de dados, todas as técnicas tiveram desempenhos semelhantes. Esta pesquisa também constatou que os atributos mais relevantes estão relacionados às oportunidades de negócios, índices de desenvolvimento associados a temas críticos e confiança nas instituições e organizações.

 


Palavras-chave


Aprendizado de máquina; Classificação; Brasil; Stakeholders

Texto completo:

PDF

Referências


Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A., & Arshad, H. (2018). State-of-the-art in artificial neural network applications: A survey. Heliyon, 4(11), e00938. https://doi.org/https://doi.org/10.1016/j.heliyon.2018.e00938

Aggarwal, C. C. (2015). Data Mining: The Textbook. Springer International Publishing. https://doi.org/10.1007/978-3-319-14142-8

Aggarwal, C. C. (2018). Neural Networks and Deep Learning. In Neural Networks and Deep Learning. Springer International Publishing. https://doi.org/10.1007/978-3-319-94463-0

Banco Central do Brasil – BCB. (2020). Relatório de Mercado Focus. ttps://www.bcb.gov.br/publicacoes/focus

Bramer, M. (2016). Principles of Data Mining (3rd ed.). Springer London. https://doi.org/10.1007/978-1-4471-7307-6

Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32. https://doi.org/10.1007/9781441993267_5

Cortes, C., & Vapnik, V. (1995). Support-Vector Networks. Chemical Biology & Drug Design, 20, 273–297. https://doi.org/10.1111/j.1747-0285.2009.00840.x

Dogan, A., & Birant, D. (2021). Machine learning and data mining in manufacturing. Expert Systems with Applications, 166, 114060. https://doi.org/10.1016/j.eswa.2020.114060

Featherstone, J. D., Ruiz, J. B., Barnett, G. A., & Millam, B. J. (2020). Exploring childhood vaccination themes and public opinions on Twitter: a semantic network analysis. Telematics and Informatics, 54(January), 101474. https://doi.org/10.1016/j.tele.2020.101474

Fergus, P., Idowu, I., Hussain, A., & Dobbins, C. (2016). Advanced artificial neural network classification for detecting preterm births using EHG records. Neurocomputing, 188, 42–49. https://doi.org/10.1016/j.neucom.2015.01.107

Genuer, R. & Poggi, J. (2020). Random Forests with R. Springer

Cham. https://doi.org/10.1007/978-3-030-56485-8

Géron, A. (2019). Mãos à Obra: Aprendizado de máquina com Scikit-Learn & TensowFlow (1a ed.). Alta Books.

Haihong, E., Yingxi, H., Haipeng, P., Wen, Z., Siqi, X., & Peiqing, N. (2019). Theme and sentiment analysis model of public opinion dissemination based on generative adversarial network. Chaos, Solitons and Fractals, 121, 160–167. https://doi.org/10.1016/j.chaos.2018.11.036

Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques (Third). Morgan Kaufmann.

Haupt, M. R., Jinich-Diamant, A., Li, J., Nali, M., & Mackey, T. K. (2021). Characterizing twitter user topics and communication network dynamics of the “Liberate” movement during COVID-19 using unsupervised machine learning and social network analysis. Online Social Networks and Media, 21, 100114. https://doi.org/10.1016/j.osnem.2020.100114

Instituto Brasileiro de Geografia e Estatística – IBGE. (2020). Produto Interno Bruto – PIB. Recuperado de https://www.ibge.gov.br/explica/pib.php

Kafaf, D. AL., Kim, D-K., Lu, L. (2017). B-kNN do Improve the Efficiency of kNN. Proceedings of the 6th International Conference on Data Science, Technology and Applications, 126-132. https://doi.org/10.5220/0006393301260132

Kang, Y., Wang, Y., Zhang, D., & Zhou, L. (2017). The public’s opinions on a new school meals policy for childhood obesity prevention in the U.S.: A social media analytics approach. International Journal of Medical Informatics, 103, 83–88. https://doi.org/https://doi.org/10.1016/j.ijmedinf.2017.04.013

Kubat, M. (2017). An Introduction to Machine Learning. Springer International Publishing. https://doi.org/10.1007/978-3-319-63913-0

Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang, J., & Liu, H. (2018). Feature Selection: A Data Perspective. ACM Computing Surveys, 50(6), 1-45. https://doi.org/10.1145/3136625

Liu, K., Ergu, D., Cai, Y., Gong, B., & Sheng, J. (2019). A New Approach to Process the Unknown Words in Financial Public Opinion. Procedia Computer Science, 162(Itqm 2019), 523–531. https://doi.org/10.1016/j.procs.2019.12.019

Modu, B., Polovina, N., Lan, Y., Konur, S., Taufiq Asyhari, A., & Peng, Y. (2017). Towards a predictive analytics-based intelligent malaria outbreakwarning system. Applied Sciences (Switzerland), 7(8). https://doi.org/10.3390/app7080836

Mullainathan, S., & Spiess, J. (2017). Machine learning: an applied econometric approach. Journal of Economic Perspectives, 31(2), 87–106. https://doi.org/10.1257/jep.31.2.87

Myslín, M., Zhu, S.-H., Chapman, W., & Conway, M. (2013). Using twitter to examine smoking behavior and perceptions of emerging tobacco products. Journal of Medical Internet Research, 15(8). https://doi.org/10.2196/jmir.2534

Oliveira, A., Faria, B. M., Gaio, A. R., & Reis, L. P. (2017). Data Mining in HIV-AIDS Surveillance System: Application to Portuguese Data. Journal of Medical Systems, 41(4). https://doi.org/10.1007/s10916-017-0697-4

Pan, Z., Wang, Y., & Pan, Y. (2020). A new locally adaptive k-nearest neighbor algorithm based on discrimination class. Knowledge-Based Systems, 204, 106185. https://doi.org/10.1016/j.knosys.2020.106185

Patle, A., & Chouhan, D. S. (2013). SVM kernel functions for classification. 2013 International Conference on Advances in Technology and Engineering (ICATE). 1-9. 10.1109/ICAdTE.2013.6524743

Puri, M., & Robinson, D. T. (2007). Optimism and economic choice. Journal of Financial Economics, 86(1), 71–99. https://doi.org/10.1016/j.jfineco.2006.09.003

Python Software Foundation (2022). What’s New In Python 3.7. Recuperado de: https://docs.python.org/3.7/whatsnew/3.7.html

Raghavendra, N, S., & Deka, P. C. (2014). Support vector machine applications in the field of hydrology: A review. Applied Soft Computing, 19, 372–386. https://doi.org/10.1016/j.asoc.2014.02.002

Silva, C., Welfer, D., Gioda, F. P., & Dornelles, C. (2017). Cattle Brand Recognition using Convolutional Neural Network and Support Vector Machines. IEEE Latin America Transactions, 15(2), 310–316. https://doi.org/10.1109/TLA.2017.7854627

Souza, J. G. de, & Spinola, N. D. (2017). Medidas do Desenvolvimento Econômico. RDE – Revista de Desenvolvimento Econômico, 1(39), 78. https://doi.org/10.21452/rde.v1i36.4697

Speiser, J. L., Miller, M. E., Tooze, J., & Ip, E. (2019). A comparison of random forest variable selection methods for classification prediction modeling. Expert Systems with Applications, 134, 93–101. https://doi.org/10.1016/j.eswa.2019.05.028

Stekhoven, D. J., & Bühlmann, P. (2011). Missforest-Non-parametric missing value imputation for mixed-type data. Bioinformatics, 28(1), 112–118. https://doi.org/10.1093/bioinformatics/btr597

Tan, P.-N., Steinbach, M., Karpatne, A., & Kumar, V. (2019). Introduction to Data Mining (2nd ed.). Pearson Prentice Hall.

Viana, G., & Lima, J. F. de. (2010). Capital humano e crescimento econômico. Interações (Campo Grande), 11(2), 137-148. https://doi.org/10.1590/S1518-70122010000200003

Wang, G., Chi, Y., Liu, Y., & Wang, Y. (2019). Studies on a multidimensional public opinion network model and its topic detection algorithm. Information Processing and Management, 56(3), 584–608. https://doi.org/10.1016/j.ipm.2018.11.010

WEKA – Waikato Environment for Knowledge Analysis. (2021). University of Waikato. Recuperado de https://www.cs.waikato.ac.nz/ml/weka/

World Bank Group – WBG. (2020). World Bank Group Country Survey 2019. https://microdata.worldbank.org/index.php/catalog/3511/get-microdata

Zendehboudi, A., Baseer, M. A., & Saidur, R. (2018). Application of support vector machine models for forecasting solar and wind energy resources: A review. Journal of Cleaner Production, 199, 272–285. https://doi.org/10.1016/j.jclepro.2018.07.164

Zhang, X., Gou, H. (2022). Statistical-mean double-quantitative K-nearest neighbor classification learning based on neighborhood distance measurement, Knowledge-Based Systems, 250, 109018. https://doi.org/10.1016/j.knosys.2022.109018

Zhang, M.-L., & Zhou, Z.-H. (2007). ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognition. 40(7), 2038-2048. https://doi.org/10.1016/j.patcog.2006.12.019

Zhao, J., Henriksson, A., Asker, L., & Boström, H. (2015). Predictive modeling of structured electronic health records for adverse drug event detection. BMC Medical Informatics and Decision Making, 15(4). https://doi.org/10.1186/1472-6947-15-S4-S1




DOI: http://dx.doi.org/10.5380/atoz.v12i0.84075

Apontamentos

  • Não há apontamentos.