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ABSTRACT: This study was carried out in the Sibinacocha lake watershed in the 
Peruvian Andes. In this region the long-term meteorological data are scarce and there 
are few studies of flow forecasts. Based on this evidence, in this study we present the 
monthly flow simulation, using statistical models and data-oriented models, to evaluate 

the performance of these methodologies. The results of the comparative statistical 
analyses indicated that the data-oriented models, specifically the Recurrent Neural 

Networks, provided great improvements over the other models applied, specifically the 
ability to capture the minimum and maximum monthly flow, resulting in excellent 
statistical values (R2=0.85, d=0.96), thus suggesting this methodology as a possible 
application for flow forecasts. 

KEYWORDS: Time-series analysis, Streamflow Forecasting, Neural Networks. 

UMA COMPARAÇÃO USANDO MÉTODOS ESTATÍSTICOS E APRENDIZADO DE MÁQUINA 
PARA PREVISÃO DE SÉRIES TEMPORAIS DE VAZÃO  

RESUMO: Este estudo foi realizado na bacia hidrográfica do lago Sibinacocha nos Andes 
peruanos. Nesta região há uma escassez de dados meteorológicos de longo prazo, além 
de poucos estudos no que refere à previsão da vazão. Com base nesta evidência, este 

estudo apresenta a simulação da vazão mensal, utilizando modelos estatísticos e modelos 
orientados a dados, com o objetivo de avaliar o desempenho destas metodologias. Os 

resultados da análise estatística comparativa indicaram que, os modelos orientados a 
dados, especificamente o modelo de Rede Neural Recorrente, proporciona grandes 
melhorias em relação aos outros modelos aplicados neste estudo, conseguindo 
representar os valores mínimos e máximos da vazão mensal (R²=0,85, d=0,96). Dessa 
forma sugere-se, a aplicação desta metodologia como possível aplicação para previsões 

de series temporais de vazão. 

PALAVRAS-CHAVE: Análise de séries temporais, previsão de vazão, redes 

neurais. 

UNA COMPARACIÓN USANDO MÉTODOS ESTADÍSTICOS Y DE APRENDIZAJE 
AUTOMÁTICO PARA SERIES DE TIEMPO DE CAUDAL  

RESUMEN: Este estúdio fue realizado en la cuenca hidrográfica del lago Sibinacocha en 
los Andes peruanos. En esta región existe una escasa información de datos 

meteorológicos a largo plazo y pocos estúdios relacionados a la predicción de caudales. 
Con base en esta evidencia, este estúdio presenta la simulación de caudal mensual, 
utilizando modelos estadísticos y modelos orientados a datos, con el objetivo de evaluar 
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el desempeño de estas metodologias. Los resultados del análisis estadístico comparativo 
indicaron que, los modelos orientados a datos, especificamente el modelo de la Red 

Neural Recurrente, proporciona grandes mejoras en relación a los otros modelos 
aplicados en este estúdio, consiguiendo representar los valores mínimos y máximos del 
caudal mensual (R²=0,85, d=0,96).  Desta manera se sugiere esta metodologia como 
posible aplicación para la previsión de series temporales de caudales. 

PALABRAS CLAVE: Análisis de series temporales, previsión de caudal, redes 

neuronales. 

1. INTRODUCTION 

Time series of flows are of great interest in hydrological research, as they 

are important for efficient river basin planning and sustainable water resources 

management, executing natural disaster forecasting, including droughts and 

floods, hydraulic infrastructure projects, electric energy generation (ZHAO & 

ZHAO, 2014; LEHNER et al., 2017).  

Thus assisting hydrologists, water resource planners, public institutions, 

hydroelectric companies, and policy-makers in the effective management of 

water and the preservation of this natural resource. Therefore, in recent 

decades the development of new approaches, together with the improvement of 

available ones, has received much attention from hydrologists around the world 

to model and accurately estimate flow processes to address the problems 

mentioned above (MOHAMMADI et al., 2006; MEHDIZADEH et al., 2019; WU et 

al., 2010; NIU et al.,2020).  

Generally, hydrological models can be divided into two groups: physical-

based conceptual models and empirical models (FATHIAN et al., 2019). Physics-

based models are sophisticated models that require a lot of information from 

various data sources (such as rain, evaporation, solar radiation, land use data, 

among others), to simulate flow behavior. However, the main disadvantage of 

these physics-based models is the presence of numerous region-dependent 

parameters that require calibration and validation, making it difficult to optimize 

them (FARFÁN et al., 2020). Besides, there can be enormous uncertainty in the 

models predictions, due to uncertainty in the input data, because inaccessibility 

to the various sources of information, limits the use of these models 

(MEHDIZADEH et al., 2019; WAGENA et al., 2020). In this regard, many 

researchers have studied the adoption of empirical models to predict future flow 

based on a long collection of historical flow records (WU et al., 2010; NIU et 

al.,2019; TIKHAMARINE et al., 2020). These empirical models are widely used 

and easier to apply to flow modeling as they do not require complex data sets or 

physical requirements (MEHDIZADEH et al., 2019).  

Empirical models include: statistics models, the most recognized for 

hydrological simulations, exponential smoothing methods (CHATFIELD & YAR, 

1988) e Box & Jenkins (BOX et al., 2008) as ARMA (autoregressive moving 

average) and ARIMA (integrated autoregressive moving average). And the data-

driven models (machine learning algorithms), among the most used by 

hydrological scientists are the artificial neural network (ANN), for its learning 

ability, generalizability and satisfactory results in accurate flow forecast 

estimates (MONTANARI et al., 2000; SHAHWAN & ODENING, 2007; 

MEHDIZADEH et al., 2019).  
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In this context, a comparative analysis developed to evaluate the 

performance of statistical modeling and data-driven modeling for forecasting 

average monthly flows in the Sibinacocha Lake watershed, located in the central 

Andes of southern Peru. Also, the empirical methodologies were not found so far 

for forecasting the flow in this region, which means that this article has the 

potential to fill this research gap and contribute to the decision-making of the 

managers responsible for the region. 

 

2. DATA AND METHODS. 

2.1 STUDY AREA 

The Sibinacocha lake watershed is located in the heart of the Vilcanota 

mountain range in the Peruvian Andes, between coordinates 13° 27' 10" at 14° 

29' 45" south latitude and 70° 41' 10" at 71° 20' 05" west longitude (Figure 1), 

with an altitude of 4860 meters above sea level (m.a.s.l). The region has a 

subtropical climate of rainy summers (December - March) and dry winters 

during the rest of the year (RUBEL & KOTTEK et al., 2011; KRONENBERG et al., 

2016).  The average annual rainfall in the highland region is approximately 700 

mm (PERRY et al., 2013). Regarding the trends in temperature, these vary 

seasonally, where the minimum daily temperature increases stronger than the 

maximum daily temperature (SALZMANN et al., 2013).  

It is important to highlight that the Sibinacocha lake watershed is of 

glacial origin and has the important function of supplying water to the Vilcanota-

Urubamba River during the dry season. In this sense, the Machupicchu Electric 

Company built a dam in this watershed in 1988, to maintain the operation of the 

Machu-Picchu and Santa Teresa hydroelectric plants (CATACORA, 2008; 

DRENKHAN et al., 2019) 

 

Figure 1 - In the figure, in the upper right corner, shows the location of the department 
of Cusco-PERU, where the Sibinacocha lake watershed is located, shown in the center of 

the figure.  
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2.2 DATASETS, ANALYSIS STATISTICS, AND FORECASTING 

In this work, the data of the observed monthly flow comes from the Alto 

Urubamba station, this set of data is available free of charge at the National 

Water Authority of Peru (http://sofia.ana.gob.pe). Note that for the basin under 

study, flow data are available from 01-01-1965 until 31-12-2013 without 

missing information. Statistical methods and machine learning methods are 

used to calculate flow estimates. The statistical methods used are the Holt-

Winters model and the Seasonal Arima model. And the machine learning 

methods were: Autoregressive Neural Network and Recurrent Neural Networks. 

For the statistical analysis, we execute the descriptive analysis of the flow 

data, following, trend analysis, for the dry and wet season, using the modified 

Mann Kendall test, the advantage of using this technique is that it avoids 

problems of temporal autocorrelation in the data, besides being little influenced 

by abrupt changes (HAMED&RAO, 1998; ZHANG et al., 2009).  After that, we 

applied the technique of repeated measure variance analysis (HAND & TAYLOR, 

1987) for the dry and wet season, with the purpose of testing whether the mean 

flow before dam construction differs significantly from the mean flow after dam 

construction.  Finally, the decomposition of the time series was executed, then 

we applied the Dickey-Fuller Augmented (ADF) test (DICKEY & FULLER, 1981) to 

verify the non-stationarity of the time series.  

In machine learning methodology it is good practice to divide the 

available data into two subsets of data (Figure 2), generally, the division is 70% 

of the data for the training set and 30% of the data is used for evaluation or 

testing (AFAN et al., 2015). However, before executing the data division, we 

point out that, because it is a historical monthly flow data, it is important to 

consider the presence of possible monthly seasonality in the series. In this 

sense, the training phase consists of presenting the data to the algorithm, 

where the algorithm learns the characteristics or patterns useful for the 

objective of the knowledge discovery process. After the training, it will be 

evaluated or tested, using new data not seen by the algorithm. The use of this 

new data set will provide realistic measures of the algorithm's performance since 

the estimated values of the test data set will be compared with the values 

observed through the application of statistical metrics. 

 

Figure 2 - Example of representation of the training and test sets. 

 

HOLT-WINTERS 

Holt-Winters (H-W) model is a statistical method used to estimate future 

values of time series data, being able to deal with seasonal trends and changes.  

The theory of the method is described in, Morettin and Toloi (2006). The 

objective is to capture the patterns of the time series, separating it into trend, 

seasonality, and error. Prediction equations are allocated in two ways: additive 

or multiplicative, according to the essence of the series. The additive H-W model 

was used in the time-series data of this work since the multiplicative prediction 
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produced extremely low values. Therefore, the additive model was adopted in 

this study applying the following equation: 

                  Yt = Nt + Tt+ St + εt,       t= 1, ……, n                       (1)  

where: Nt: is level of the series, shows how the expected time series evolves; 

Tt: is the tendency, this relates to the fact that the predicted time series can 

have increased or decreasing motions in different time intervals; St: is a 

seasonal component, which is related to the fact that the expected time series 

has cyclical patterns of variation that repeat at relatively constant time intervals. 

Thus, the additive form of the Holt-Winters algorithm is presented in Equations 

2,3, and 4. 

             Nt = α( yt – St-s) + (1-α)(Nt-1 + Tt-1),        0≤ α ≤1           (2) 

             Tt = β (Nt – Nt-1) + (1- β) Tt-1,                  0 ≤ β ≤ 1         (3) 

             St = δ(Yt – Nt ) + (1- δ) St-s,                      0  ≤ δ ≤ 1        (4) 

 

Where: Nt, Tt, and St denote the time-adjusted values "t"; S is the 

number of times that the series is observed per year, and α, β, δ are 

straightening constants 

 

SEASONAL ARIMA 

In hydrological studies, it is common to find seasonality in the series. 

This brings us to the need to use models that incorporate this important 

temporal resource. The Seasonal Arima model is a seasonal autoregressive 

integrated moving average (SARIMA) model used to assist in seasonality (BOX 

et al., 2008). The SARIMA model is represented by (p, d, q) x (P, D, Q)z  where 

"p" represents the non-seasonal autoregressive term, "q" represents the non-

seasonal moving average term, "d" represents the non-seasonal differencing 

terms and (P, D, Q)z represents the seasonal autoregressive, seasonal moving 

average and seasonal difference terms respectively. SARIMA model was defined 

at Equation (5) (BOX et al. 2008, WIBOWO et al., 2017)   

 

               ɸNAR(B) ɸSAR(B
z)(1-B)d (1-Bz)D St = θNMA(B) θSMA (B)εt              (5)                             

 

Where z = seasonality lag, ɸNAR = non-seasonal autoregressive 

parameter, ɸSAR = seasonal autoregressive parameter, θNMA = non-seasonal 

moving average parameter, θSMA = seasonal moving average parameter, D = 

seasonal difference, d = non-seasonal difference, St = Streamflow at time t, εt 

is white noise. 

 

NEURAL NETWORK AUTOREGRESSIVE  

The ANN is the most widely used technique in the field of machine 

learning, created from the inspiration of the structure of the human brain, 

therefore composed of a certain number of neurons. Thus the flow data that are 

inserted in the ANN, enter through an input layer (predictors) and are 
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subsequently processed through different intermediate layers, producing a result 

in the output layer (predictions) (HAYKIN, 2001). In recent decades, many 

studies have shown that ANNs are adequate to solve hydrology-related 

problems (ZHANG & GOVINDARAJU, 2000; JAIN & SRINIVASULU, 2004; CHANG 

et al. 2010; DARIANE & KARAMI, 2014). Because in their structure can have 

both nonlinear and linear models, presenting improved results when compared 

with other prediction models (KHASHEI, & BIJARI, 2010). When dealing with 

time-series data, lagged time series values can be used as input to a neural 

network by calling it a neural network autoregressive (NNAR) model. In this 

article we considered feedforward networks with a hidden layer using notation 

NNAR (p, P,k)s  in which indicates that p represents late entries  (yt-1, yt-2,..., yt-

p, yt-s, yt-2s, yt-Ps) and k neurons in the hidden layer (HYNDMAN & 

ATHANASOPOULOS, 2013). 

 

RECURRENT NEURAL NETWORKS  

Recurrent neural networks (RNN) was first developed in the 1980s. RNN 

is a dynamic, deep-learning neural network architecture that specializes 

specifically for interdependent data, such as prediction of complex hydrological 

and meteorological time series (COULIBALY & BALDWIN, 2005, KUMAR et al., 

2004).  RNNs have their architecture, an input layer, one or more hidden layers 

composed of recurrently connected nodes, and an output layer. Note that on all 

RNNs layers, they will share their parameter values over the entire sequence 

time interval, this feature allows scaling to longer or shorter sequences. So the 

main difference between RNNs and NNAR is that RNNs have connections that 

allow feedback on the architecture to "remember" previous information 

(WERBOS, 1988; ELMAN, 1990). 

 

  Figure 3 - Topology structure of NNAR and RNN. 

 

2.3 PERFORMANCE METRICS FOR EVALUATION 

To classify the performance of the proposed models (Table 1) were used 

the main techniques adopted and recommended by several authors (AHMADI et 

al., 2014, DAGGUPATI et al., 2015, MORIASI et al., 2007), which include the 

coefficients of Nash-Sutcliffe (NSE), percentage bias (PBIAS), determination 
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coefficients (R2), mean absolute error (MAE), mean root square error (RMSE), 

and index the Willmott (d). These are calculated as follows: 
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Where,    is observed flow in time  ,    is Simulated flow in time  ;    is the 

average observed flow;     is average simulated flow and   is the number of 

observations. 

Table 1 -  Forecast quality metrics used in the present study. 

Abbreviated 

name 
Full name Values 

Optimum 

value 

Condition 

(preferred 

values) 

MAE 

Mean absolute 

error [0, + ∞) 0 Smaller MAE 

RMSE 

Root mean 

square error [0, + ∞) 0 Smaller RMSE 

PBIAS Percent bias 

(− ∞, 

+ ∞) 0 Smaller |PBIAS| 

NSE 

Nash–Sutcliffe 

efficiency (- ∞, 1] 1 Larger NSE 

R² 

Coefficient of 

determination [0, 1] 1 Larger R² 

d 

Index the 

Willmott [0, 1] 1 Larger d 

 

Mean Absolute Error (MAE) provides an easily interpretable assessment, 

as it measures the average magnitude of errors in a set of predictions 

(HYNDMAN & KOEHLER 2006). The RMSE is one of the most commonly used 

performance measures in hydrological modeling, is a quadratic scoring rule that 

also measures the average magnitude of the error. It is the square root of the 

mean of the quadratic differences between prediction and actual observation 

(HYNDMAN & KOEHLER 2006). PBIAS, which measures the average tendency of 
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simulated data to be higher or lower than observed values, is a potential metric 

for hydrology scientists (GUPTA et al., 2009).  

The NSE measures the strength of the relationship between the variance 

of the residuals and the variance of the observed values (NASH & SUTCLIFFE, 

1970; MORIASI et al., 2007). Pearson's product-moment correlation square is 

indicated as R2 where it represents the proportion of the total variance of the 

measured data that can be explained by the simulated data, the higher the 

values, close to 1, represent better model performance. The index designated 

concordance, represented by the letter "d", related to the deviation of the 

estimated values from those observed (WILLMOTT et al, 1985). Its values range 

from 0 for no concordance to 1 for perfect concordance.           

 

3. RESULTS AND DISCUSSION 

3.1 DESCRIPTIVE ANALYSIS 

The main task in dealing with time series is to define a model capable of 

representing the process involved (SIQUEIRA, 2013). Thus, to analyze a certain 

historical series of river basin fluviometric data, it is necessary for the principle 

to perform an exploration of the data, since the flow of a given water body has 

as its basic characteristic a great temporal and spatial variability. Note that 

Figure 4 shows the behavior for the entire period studied (1965 - 2013), and 

Figure 5 shows a well-defined seasonal pattern of monthly flow (May to August).  

 

Figure 4 - Observed streamflow series (m³/s) from January 1965 to December 2013 in 
the Sibinacocha watershed.   

The mean flow rate for the analyzed period was 12.87 m³/s with a 

standard deviation of 10.42 m³/s. The maximum monthly average flow rate was 

48.81 m³/s in February 1974, while the minimum monthly average flow rate 

was 2.16 m³/s in September 1984. The high coefficient of variation (above 

80%) indicates the high degree of variability of the observed series, 

corroborating the seasonality observed in Figures 4 and 5. 
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In the Peruvian Andes, during the year there are two well-differentiated 

periods, the dry and wet period. Since the wet season begins in the first 

precipitation in September, increasing between December and March, and 

subsequently decreasing from April. Thus, the months from May to August are 

the dry season (LAGOS et al., 2008). In this sense, according to Figure 5, it can 

be observed that the " wet " period is marked by the months with the highest 

flow, and the " dry " period as the periods with the lowest flow. 

 

Figure 5 - Seasonal streamflow series (m³/s) on the Sibinacocha lake watershed, 

between the years 1965-2013. 

Trend analyses were performed for the full 48-year of data, both for the 

dry and wet periods. As demonstrated modified Mann Kendall's test showed 

values of p-value = 0.38, p-value = 0.23, p-value = 0.49 respectively, which 

indicates that the monthly flow data do not present a significant trend for the 

periods under analysis. 

Analysis of variance of repeated measurements was executed to evaluate 

the monthly means of flow before and after the dam construction. The results 

indicated that there was no significant statistical difference (p-value = 0.367) 

between the monthly flow means (Figure 6) for the dry season. On the contrary, 

a significant statistical difference (p=0.02) of the average monthly flow during 

the wet season was observed, which the average value was 17.8 m³/s before 

the dam construction, changing to 16.8 m³/s after the hydraulic work. (Figure 

7).  
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Figure 6 - Dry season flow (m³/s) in the Sibinacocha lake watershed, before and after 
the construction of the dam, the dashed line represents the average dry season for the 

period. 

 

Figure 7 - Wet season flow (m³/s) in the Sibinacocha lake watershed, before and after 

the construction of the dam, the dashed line represents the average wet season for the 
period. 

Figure 8 shows the classical additive decomposition of the flow series 

(seasonality, trend, and random components) corroborating that the series has 

seasonality and there is no evidence of systematic increase or decrease of the 

variable over time. 
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Figure 8 -  Decomposition of additive time series of streamflow in seasonality, trend, 
and randomness components. 

 

3.2 FORECASTING STREAMFLOW 

The results of the calculation of the monthly flow estimates in the four 

models used represented the monthly pattern of the data observed for the 

Sibinacocha Lake watershed (Figure 9). 

The Holt-Winters model, it presented good evaluation coefficients except 

for PBIAS (Table 2 and Figure 10). Also, it is observed in Figure 7, that the 

model presented much lower predictions of the observed minimum flow values. 

Regarding the Sarima model, although it obtained acceptable evaluation metrics 

(Table 2 and Figure 10), the model was not able to provide good predictions of 

monthly flows, since the Sarima model could not reach the maximum observed 

flow values, besides that overestimates the minimum values of monthly flow.   

For the NNAR model, this type of modelling provided acceptable metrics, 

although a lower correlation coefficient when compared to the statistical models 

presented (Figure 10). It is observed that the NNAR model pointed to an 

improvement in the flow predictions; however, it also failed to capture the 

maximum values of the monthly flow. Regarding the modeling via recurrent 

neural networks (RNNs), it showed a better monthly flow pattern, when 

compared to the other models applied in this work, besides presenting good 

evaluation metrics, this type of neural network was able to capture the 

maximum and minimum values of monthly outflow over time. 
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Figure 9 - Streamflow Forecasting (a) Observed and Holts-Winters, (b) Observed and 
Arima, (c) Observed and NNAR, (d) Observed and RNN. 

 

Figure 10 - Taylor Diagram summarizes model validation information (Holt-winters, 
Seasonal Arima, NNAR, RNN). The radial distance from the origin represents the standard 
deviation of the observed flow. The green lines represent the RMS error centered on the 
simulated field. The correlation coefficient is represented by the azimuth position of the 
points. 
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Table 2 - Results of model evaluation metrics. 

Performance 

Metrics  

Stochastic  models Machine Learning 

Holt-Winters          
Seasonal 

Arima  
NNAR                RNN               

MAE 4.48 3.71 3.49 1.7 

RMSE 5.76 5.15 5.41 4.05 

PBIAS -30.2 -9.4 1.5 -2.5 

NSE 0.7 0.76 0.73 0.85 

R² 0.84 0.78 0.74 0.85 

d 0.91 0.94 0.93 0.96 

 

Studies applied in other river basins have shown that data-driven models 

can be relatively straightforward, providing good predictive information, 

eliminating some shortcomings of other model types (HAN et al., 2007, 

MASSELOT et al., 2016, NOORI & KALIN., 2016). In this sense, based on the 

results obtained so far, it can be confirmed that neural networks have the 

potential to be a useful tool for flow prediction, being considered as alternatives 

to traditional approaches. 

 

4. CONCLUSION 

In this work, the monthly flow time series provided by the National Water 

Agency of Peru was used, where it was possible to analyze the monthly flow 

trends for the years analyzed.  In addition, it was also observed that the 

construction of the dam, maintains the flow during the dry season and helps to 

control floods during the wet season, thus confirming the importance of the 

construction of the hydraulic works.Then, different methodologies were applied 

to evaluate their performance in calculating the monthly flow simulation. 

Therefore, it was demonstrated the high performance of Recurrent Neural 

Networks in comparison with the other models presented here, thus showing the 

RNN as a promising and rapid model for flow simulation with the possibility of 

being applied in other basins.  However, it is advisable to use meteorological 

variables together with the observed flow data to further improve the results of 

the estimates. This research will continue with the application of a physics-based 

model for the simulation of the flow in Sibinacocha Lake Watershed, illustrating 

the hydrological cycle of this basin, and contributing new insights for the region.  

 

ACKNOWLEDGMENTS 

The authors gratefully acknowledge the financial support to the first 

author granted by the CAPES 001 funding code and thank the reviewers for their 

contribution. 

 

REFERENCES 

AFAN, H. A.; EL-SHAFIE, A.; YASEEN, Z. M.; HAMEED, M. M.; MOHTAR, W. H. 

M. W.; HUSSAIN, A. ANN based sediment prediction model utilizing different 

input scenarios. Water resources management, v. 29, n.4, p.1231-1245, 2015. 



_________________Revista Brasileira de Climatologia_________________ 
ISSN: 2237-8642 (Eletrônica) 

Ano 16 – Vol. 26 – JAN/JUN 2020                                             659 

AHMADI, M.; ARABI, M.; ASCOUGH II, J. C.; FONTANE, D. G.; ENGEL, B. A. 

Toward improved calibration of watershed models: Multisite multiobjective 

measures of information. Environmental Modelling & Software, v.59, p.135-145, 

2014. 

BAYER, F. M.; SOUZA, A. M. Wavelets e modelos tradicionais de previsão: Um 

estudo comparativo. Revista Brasileira de Biometria. v.28, p, 40-61, 2010. 

BOX, G.; JENKINS, G. M.; REINSEL, G. Time series analysis: forecasting and 

control. 4.ed. Hoboken, New Jersey: John Wiley & Sons, 2008, 746p.  

CATACORA, E. A. Predicciones del comportamiento de caudales de la CH 

Machupicchu mediante análisis arima de series temporales. Tese (Maestría en 

Ciencias con Mención en Energética)- Universidad Nacional de Ingeniería, Lima, 

2008. 

CHANG, L.C; Shen, HY; Wang, Y.F; Huang, J.Y; Lin Y.T. Clustering-based hybrid 

inundation model for forecasting flood inundation depths. J Hydrol 385, p, 257–

268, 2010. 

CHATFIELD, C.; YAR, M. Holt-winters forecasting: some practical issues. Journal 

of the Royal Statistical Society: Series D, v.37, p,129-140, 1988. 

COULIBALY. P.; BALDWIN. C.K. Nonstationary hydrological time series 

forecasting using nonlinear dynamic methods Journal of Hydrology, v.307, p,1–

4, 2005.  

DAGGUPATI, P.; YEN, H.; WHITE, M. J.; SRINIVASAN, R.; ARNOLD, J. G.; 

KEITZER, C. S.; SOWA, S. P. Impact of model development, calibration and 

validation decisions on hydrological simulations in West Lake Erie Basin. 

Hydrological Processes, v. 29, n.26, p.5307-5320, 2015. 

DARIANE, A.B; KARAMI,  F. Deriving hedging rules of multi-reservoir system by 

online evolving neural networks. Water Resour Manag v.28, n.11, p, 3651–

3665, 2014. 

DICKEY, B. Y. DAVID A.; FULLER, 1981 Wayne A. Likelihood Ratio Statistics for 

Autoregressive Time Series with a Unit Root. Econometrica, v. 49, p, 1057–

1072, 1981. 

DRENKHAN, F.; HUGGEL, C.; GUARDAMINO, L.; HAEBERLI, W. Managing risks 

and future options from new lakes in the deglaciating Andes of Peru: The 

example of the Vilcanota-Urubamba basin. Science of the Total Environment, v. 

665, n. 465-483, 2019. 

ELMAN, J. L. Finding structure in time. Cognitive science, v. 14, n. 2, p. 179-

211, 1990. 

FARFÁN, J. F.; PALACIOS, K.; ULLOA, J.; AVILÉS, A. A hybrid neural network-

based technique to improve the flow forecasting of physical and data-driven 

models: Methodology and case studies in Andean watersheds. Journal of 

Hydrology: Regional Studies, v. 27, p. 100652, 2020. 

FATHIAN, F.; MEHDIZADEH, S.; SALES, A. K.; SAFARI, M. J. S. Hybrid models to 

improve the monthly river flow prediction: Integrating artificial intelligence and 

non-linear time series models. Journal of Hydrology, v. 575, p. 1200-1213, 

2019. 



_________________Revista Brasileira de Climatologia_________________ 
ISSN: 2237-8642 (Eletrônica) 

Ano 16 – Vol. 26 – JAN/JUN 2020                                             660 

GUPTA, H.V.; KLING, H.; YILMAZ, K.K. MARTINEZ, G.F. Decomposition of the 

mean squared error and NSE performance criteria: implications for improving 

hydrological modelling. J. Hydrol 377(1–2), p,80–91, 2009.  

HAMED, K. H.; RAO, A. R A modified Mann-Kendall trend test for auto correlated 

data. Journal of Hydrology, v. 204, p.182-196, 1998. 

HAN, T.; KWONG, S. LI Uncertainties in real-time flood forecasting with neural 

networks Hydrol. Process., v. 2 n.21, p, 223-228,2007. 

HAND, D. J.; TAYLOR, C. C. Multivariate analysis of variance and repeated 

measures: a practical approach for behavioural scientists (Vol. 5). CRC press. 

London, 1987. 225 p. 

HAYKIN,  S.  Redes  neurais  –  princípios  e  prática. Trad.  Paulo  Martins  

Engel.  Porto Alegre: Bookman, 2001. 891 p. 

HYNDMAN, R.J.; ATHANASOPOULOS, G. Forecasting: principles and practice. 

OTexts:  2013. 377p.  

HYNDMAN, R.J.; KOEHLER, A.B. Another look at measures of forecast accuracy. 

Int J Forecast v. 4, n. 22, p, 679–688, 2016.  

JAIN. A.; SRINIVASULU, D. Development of effective and efficient rainfall–runoff 

models using integration of deterministic, real-coded genetic algorithms, and 

artificial neural network techniques Water Resour. Res., v. 40, n.4, 2004. 

KHASHEI, M.; BIJARI, M. An artificial neural network (p, d, q) model for 

timeseries forecasting. Expert Systems with applications, v. 37, n.1, p, 479-489, 

2010. 

KRONENBERG, M., SCHAUWECKER, S., HUGGEL, CH., SALZMANN, N., 

DRENKHAN, F., GIRAÁLDEZ, C., GURGISER, W., KASER, G., SUAREZ, W., 

GARCÍA, J., ROHRER, M. “¿Cuál Es El Futuro Del Caudal En Las Cuencas 

Glaciadas de Los Andes Centrales?” In , 1364–73. Lima, Perú: XXVII Congreso 

Latinoamericano de Hidráulica. 2016. 

KUMAR, D.N.; RAJU, K.S.T. Sathish River flow forecasting using recurrent neural 

networks Water resources management, v.18, n. 2, p, 143-161, 2004. 

LAGOS,  P.;  SILVA,  Y.;  NICKL,  E.;  MOSQUERA,  K. El  Niño?  Related  

Precipitation Variability in Perú. Advances in Geosciences, 2008. 

LEHNER, F.; WOOD, AW.; LLEWELLYN, D.; BLATCHFORD, DB.; GOODBODY, 

AG.; PAPPENBERGER, F. Atenuar os impactos da não estacionariedade climática 

na previsibilidade sazonal de vazões no sudoeste dos EUA. Geophysical 

Research Letters, v. 44 , n.24, p.12-208, 2017. 

MASSELOT, P.; DABO-NIANG, S.; CHEBANA, F.;  Ouarda, T.B. Streamflow 

forecasting using functional regression J. Hydrol., v. 538, p, 754-766, 2016. 

MONTANARI, A.; ROSSO, R.; TAQQU, M.S. A seasonal fractional ARIMA model 

applied to the Nile River monthly flows at Aswan. Water Res Res v. 36, n. 5, 

p,1249–1259, 2000. 

MEHDIZADEH, S.; FATHIAN, F.; ADAMOWSKI, J. F. Hybrid artificial intelligence-

time series models for monthly streamflow modeling. Applied Soft Computing, 

v.80, p. 873-887, 2019. 



_________________Revista Brasileira de Climatologia_________________ 
ISSN: 2237-8642 (Eletrônica) 

Ano 16 – Vol. 26 – JAN/JUN 2020                                             661 

MORETTIN, P. A.; TOLOI, C. M. C. Análise de Séries Temporais. 2. ed. São 

Paulo: Edgard Blücher, 2006, 350p. 

MOHAMMADI, K., ESLAMI, H. R., & KAHAWITA, R. Parameter estimation of an 

ARMA model for river flow forecasting using goal programming. Journal of 

Hydrology, v.331, n.1-2, p. 293-299, 2006. 

MORIASI, D. N.; ARNOLD, J. G.; LIEW, M. W. VAN; BINGNER, R. L.; HARMEL, R. 

D.; VEITH, T. L. Model evaluation guidelines for systematic quantification of 

accuracy in watershed simulations. Transactions of American Society of 

Agricultural and Biological Engineers, v.50, n.3, p, 885-900, 2007. 

MORTATTI, J.; BORTOLETTO JUNIOR, M. J.; MILDE, L. C. E.; PROBST, J. L. 

Hidrologia dos rios Tietê e Piracicaba: séries temporais de vazão e hidrogramas 

de cheia. Revista de Ciência & Tecnologia, v.12, n.23, p, 55-67, 2004. 

NASH, J. E.; SUTCLIFFE, J. V. River flow forecasting through conceptual models 

part 1 – A discussion of principles. Journal of Hydrology, v.10, n.3, p, 282-290, 

1970. 

NIU, W. J.; FENG, Z. K.; CHEN, Y. B.; ZHANG, H. R.;  CHENG, C. T. Annual 

streamflow time series prediction using extreme learning machine based on 

gravitational search algorithm and variational mode decomposition. Journal of 

Hydrologic Engineering, v. 25, n. 5, p. 04020008, 2020. 

NOORI, N.; KALIN, L.Coupling SWAT and ANN models for enhanced daily 

streamflow prediction J. Hydrol., v.533, p,141-151, 2016. 

PERRY, L.B.; SEIMON, A.; KELLY, G. M. Precipitation delivery in the tropical high 

Andes of southern Peru: new findings and paleoclimatic implications, 

International journal of Climatology, v. 34, p. 197-215, 2013. 

RUBEL, F.; KOTTEK, M. Comments on:“The thermal zones of the Earth” by 

Wladimir Köppen (1884). Meteorologische Zeitschrift, v. 20, n. 3, p. 361-365, 

2011. 

SALZMANN, N.; HUGGEL, C.; ROHRER, M.; SILVERIO, W.; MARK, B.; BURNS, 

P.; PORTOCARRERO, C.  Glacier Changes and Climate Trends Derived from 

Multiple Sources in the Data  Scarce Cordillera Vilcanota Region, Southern 

Peruvian Andes. The Cryosphere, v. 7, p, 103-118, 2013. 

SHAHWAN,  T.; ODENING,  M. Forecasting  agricultural  commodity prices using 

hybrid neural networks. In Computational intelligence in economics and finance, 

p, 63-74, 2007.. 

SIQUEIRA, H. V. Máquinas desorganizadas para previsão de séries de vazões. 

Tese (Doutorado em Engenharia Elétrica) — Universidade Estadual de 

Campinas, Campinas, 2013, p. 218 

TIKHAMARINE, Y.; SOUAG-GAMANE, D.; AHMED, A. N.; KISI, O.; EL-SHAFIE, A. 

Improving artificial intelligence models accuracy for monthly streamflow 

forecasting using grey Wolf optimization (GWO) algorithm. Journal of Hydrology, 

v. 582, p. 124435, 2020. 

WAGENA, M. B.; GOERING, D.; COLLICK, A. S.; BOCK, E.; FUKA, D. R.; BUDA, 

A.; EASTON, Z. M. Comparison of Short-Term Streamflow Forecasting using 

Stochastic Time Series, Neural Networks, Process-Based, and Bayesian Models. 

Environmental Modelling & Software, p. 104669, 2020. 



_________________Revista Brasileira de Climatologia_________________ 
ISSN: 2237-8642 (Eletrônica) 

Ano 16 – Vol. 26 – JAN/JUN 2020                                             662 

WERBOS, P.J. Generalization of backpropagation with application to a recurrent 

gas market model. Neural Netw. v.1, p, 339–356, 1988. 

WIBOWO, W.; DWIJANTARI, S.;HARTATI, A. Time Series Machine Learning: 

Implementing ARIMA and Hybrid ARIMA-ANN for Electricity Forecasting 

Modeling. In International Conference on Soft Computing in Data Science. P, 

126-139. Springer, Singapore. 2017. 

WILLMOTT, C. J.; ROWE, C. M.; MINTZ, Y. Climatology of the terrestrial 

seasonal water cycle. Journal of Climatology, v. 5, n. 6, p. 589-606, 1985. 

WU, C. L.; CHAU, K. W. Data-driven models for monthly streamflow time series 

prediction. Engineering Applications of Artificial Intelligence, v. 23, n.8, p. 1350-

1367, 2010. 

ZHANG, B.; GOVINDARAJU, S. Prediction of watershed runoff using bayesian 

concepts and modular neural networks Water Resour. Res., v. 36, n. 3, p, 753-

762, 2000. 

ZHANG, W; YAN, Y; ZHENG, J; LI, L; DONG, X; CAI, H. Temporal and spatial 

variability of annual extreme water level in the Pearl River Delta region, China. 

Global and Planetary Change v. 69, p, 35-47, 2009. 

ZHAO, T.;ZHAO, J. Joint and respective effects of long-and short-term forecast 

uncertainties on reservoir operations. Journal of hydrology, v. 517, p, 83-94, 

2014 


