IMPLEMENTATION OF ENO AND WENO SCHEMES FOR
FINITE VOLUME UNSTRUCTURED GRID SOLUTIONS OF
COMPRESSIBLE AERODYNAMIC FLOWS

W. R. Wolfa,
and J. L. F. Azevedob

a Instituto Tecnológico de Aeronáutica
Departamento de Engenharia Eletrônica e de Computação
CP. 12228-900, São José dos Campos, São Paulo, Brasil
wolf@itea.br

b Instituto de Aeronáutica e Espaço
Divisão de Sistemas Espaciais
CP. 12228-904, São José dos Campos, São Paulo, Brasil

ABSTRACT
In this work the essentially non-oscillatory schemes (ENO) and the weighted
essentially non-oscillatory schemes (WENO) are implemented in a cell centered
finite volume context on unstructured meshes. The 2-D Euler equations will be
considered to represent the flows of interest. The ENO and WENO schemes have
been developed with the purpose of accurately capturing discontinuities appearing
in problems governed by hyperbolic conservation laws. In the high Mach number
aerodynamic studies of interest in the present paper, these discontinuities are
mainly represented by shock waves and contact discontinuities. The entire
reconstruction process of ENO and WENO schemes is described in detail for
linear polynomials and, therefore, second-order of accuracy. An extension to
higher orders of accuracy is presented in the paper in a straightforward manner
and applications for compressible flows are shown. These applications compare
the accuracy of the schemes with some related data that appear in the references
cited in this paper or that come from analytical solutions.

Keywords: ENO, WENO, CFD, Unstructured Grids, Finite Volume

NOMENCLATURE
\begin{itemize}
\item A Roe's flux Jacobian matrix
\item c non dimensional speed of sound
\item e non dimensional total energy per unit of volume
\item E, F flux vectors in the (x,y) cartesian directions, respectively
\item G Gaussian point
\item p non dimensional pressure
\item Q vector of conservative properties
\item S surface of the control volume
\item t non dimensional time
\item u,v non dimensional velocities in the (x,y) cartesian
directions, respectively
\item V control volume
\item w Gaussian weight
\end{itemize}

Greek symbols
\begin{itemize}
\item α coefficients used in the Runge-Kutta scheme
\item γ ratio of specific heats
\item Γ edge of the control volume
\item ρ non dimensional density
\end{itemize}

Subscripts
\begin{itemize}
\item i i-th volume
\item ng ng-th neighbor of the i-th volume
\end{itemize}

Superscripts
\begin{itemize}
\item n n-th iteration
\end{itemize}

INTRODUCTION
In this work, the essentially non-oscillatory schemes (ENO) introduced by Harten et al. (1987), and the weighted
essentially non-oscillatory schemes (WENO) introduced by Liu et al. (1994), are implemented in a cell centered finite volume
context for unstructured meshes. The two dimensional Euler equations will be considered to represent the flows of interest.
The ENO and WENO schemes have been developed with the purpose of accurately capturing discontinuities appearing
in problems governed by hyperbolic conservation laws. In the high
Mach number aerodynamic studies of interest in the present paper,
these discontinuities are mainly represented by shock waves and
contact discontinuities. The entire reconstruction process of ENO
and WENO schemes is described in detail for linear polynomials
and, hence, second-order of accuracy, with extension to higher
orders, and applications to compressible flows are presented
showing the accuracy of the schemes and their behaviour. For
the ENO schemes, interpolation polynomials of one order less
than the order of accuracy expected in the solution are computed
and these polynomials are a good approximation to the values
of the conserved variables within the cells. These polynomials
interpolate primitive variable values in Gauss quadrature points
using stencils determined by a Von Neumann neighborhood
(Sonar, 1997). The control volume moments and the mean
values of primitive variables in the cells are used to compute
the polynomial coefficients and, hence, one can compute the
oscillation of the polynomials and select the smoothest among
them through the values of these coefficients. While the ENO
schemes use the smoothest polynomial, the WENO schemes use
all ENO computed polynomials for the stencils and, therefore,
they construct one polynomial only. Non negative weights,
which must add up to one, are computed for every polynomial
through oscillation indicators and the WENO polynomial is
constructed by the sum of all the ENO polynomials multiplied
by the respective weights (Liu et al., 1994, Friedrich, 1998).
The weights attributed to the polynomials can be of the order of
accuracy desired in the solution if these polynomials are in the
discontinuous regions of the mesh or they can be of order one if
the polynomials are in the smooth regions of the flow. Classical
computational fluid dynamics applications such as shock tube
problems, the flow in a channel with a forward-facing step and
the transonic flow over a NACA0012 are presented with the aim
of comparing the accuracy of the proposed methods. Such an
assessment of the methods here implemented is achieved through
the comparison of the present numerical results with analytical
solutions, with the results obtained with different second-order
methods already tested and validated by the present research
group, and with other independent computational data available
in the literature.

THEORETICAL FORMULATION

 Governing equations

In the present work, the 2-D Euler equations are solved
in their integral form as Eq. (1),
\[\frac{\partial}{\partial t} \int_{V} Q dV + \int_{\partial V} \left(\mathbf{V} \cdot \mathbf{F} \right) dS = 0, \]
(1)
where \(\mathbf{F} = \mathbf{E} \mathbf{F}^T + \mathbf{F} \mathbf{F} \). The application of the divergence theorem to
Eq. (1) yields to
\[\frac{\partial}{\partial t} \int_{V} Q dV + \int_{S} \left(\mathbf{P} \cdot \mathbf{n} \right) dS = 0, \]
(2)
where \(V \) represents the control volume, \(S \) represents the surface
of the control volume and \(\mathbf{n} \) is the unit normal vector outward
to the surface, \(S \), positive outward. The vector of conserved
variables, \(Q \), and the convective flux vectors, \(E \) and \(F \), are given by
\[Q = \begin{bmatrix}
\rho \\
\rho u \\
\rho v \\
e
\end{bmatrix}, \]
(3)
\[E = \begin{bmatrix}
\rho u \\
\rho u^2 + p \\
\rho u v \\
(e + p) u
\end{bmatrix}, \]
\[F = \begin{bmatrix}
\rho v \\
\rho u v \\
\rho v^2 + p \\
(e + p) v
\end{bmatrix}, \]
(4)

In the equations above, \(\rho \) represents the density, \(p \) is
the pressure, \(u \) and \(v \) represent the Cartesian components of
the velocity, and \(e \) is the total energy per unit of volume. The
system is closed by the equation of state for a perfect gas
\[p = \left(\gamma - 1 \right) \frac{e - \frac{1}{2} \rho \left(u^2 + v^2 \right)}{\gamma - 1} \]
(5)
where the specific heat ratio \(\gamma \) was choosen as 1.4 for all the
calculations in this work.

Equation (2) discretized in a cell centered finite volume context can be rewritten for the \(i \)-th control volume as Eq. (6)
\[\frac{\partial Q_i}{\partial t} = - \frac{1}{V_i} \int_{\Gamma_i} \left(\mathbf{P} \cdot \mathbf{n} \right) dS, \]
(6)
where \(Q_i \) is the mean value of \(Q \) at time \(t \) over the \(i \)-th control
volume \(V_i \).

NUMERICAL FLUX EVALUATION

The spatial discretization is concerned in finding a
discrete approximation to the integral in the right side of
Eq. (6). The control volumes considered in this work are
the triangles themselves and they can be decomposed into
a finite number of line segments \(\Gamma_j \). One should observe
that the control volumes could be composed by any type of
polygon, such as quadrilaterals for example. In this work, as
an evolutionary step, the authors have restricted themselves,
however, to triangular grids. Hence, it is possible to write
\[S_i = \bigcup_{j} \Gamma_j \]
(7)

Thus, the boundary integral from Eq. (6) can be decomposed into
\[\int_{S} \left(\mathbf{P} \cdot \mathbf{n} \right) dS = \sum_{j} \int_{\Gamma_j} \left(\mathbf{P} \cdot \mathbf{n} \right) dS, \]
(8)
and, as \(\mathbf{n} \) is constant on each line segment \(\Gamma_j \), the right side of Eq.
(8) is discretized using \(N \)-point Gaussian integration formulae with
degree \(2N - 1 \) and order of accuracy \(2N \). Using the integration
formulae cited above, one obtain the following approximation
\[\int_{S} \left(\mathbf{P} \cdot \mathbf{n} \right) dS \approx \sum_{j} \left(\sum_{i=1}^{N} \omega_i \mathbf{P} \left(\mathbf{G}_i, t \right) \cdot \mathbf{n} \right) \]
(9)
where G_t and w_{arc}, respectively, the Gaussian points and the weights on line segment Γ_j.

Using the method described above one can compute values to Q_i in some instant t and then, from these mean values, one can reconstruct polynomials that represent the primitive variables ρ, u, v and p. Finally, it is possible to compute values of the conserved variables in the Gaussian points. Due to the discontinuity of the reconstructed values of the conserved variables over the cell boundaries, one must use a numerical flux function to approximate these values on the cell boundaries.

In this work, the authors have used the Roe flux difference splitting method (Roe, 1981) to compute this approximation. Hence, the flux evaluation in the right hand side of Eq. (9) is computed as

$$
\hat{p}(Q(G_t),\tau) \approx \hat{p}(Q_i, Q_{ng}(G_t),\tau) = \\
\frac{1}{2} \left[\hat{p}(Q_i, Q_{ng}(G_t)) + \hat{p}(Q_{ng}(G_t), Q_i) \right] + \frac{1}{2} \left[A(Q_i, Q_{ng}(G_t)) \right] \left[(Q_i) - (Q_{ng}(G_t)) \right]
$$

In Eq. (10), the A matrix is a positive semidefinite matrix formed from the flux Jacobian matrix in the sense defined by Roe, (1981). In the same equation, $Q_i(G_t)$ is the vector of conserved variables computed at the quadrature point, G_t, using the polynomial reconstruction associated to the i–th control volume. Similarly, $Q_{ng}(G_t)$ is the vector of conserved variables computed at the same quadrature point, G_t, but using the polynomial reconstruction associated with the ng–th control volume. Here, it is being assumed that “ng” represents the neighbor of the i–th control volume, which shares the Γ_j line segment with the i–th cell.

TEMPORAL DISCRETIZATION

In the present work, the system of equations to solve became an ordinary differential equation (ODE) problem (Eq. (11)),

$$
\frac{dQ}{dt} = -\frac{1}{V_i} C(Q),
$$

discretized using a fully explicit second-order accurate, five-stage Runge-Kutta time stepping scheme to advance the solution of the governing equations in time. The scheme can be written as

$$
Q^{(0)} = Q^*_t, \\
Q^{(n+1)} = Q^{(n)} - \alpha_n \frac{\Delta t}{V_i} C(Q^{(n)}), \\
: \\
Q^{(n)} = Q^{(0)} - \alpha_n \frac{\Delta t}{V_i} C(Q^{(0)}), \\
Q^{(n+1)} = Q^{(1)}.
$$

where the superscripts n and $n+1$ denote respectively the values of the properties at the beginning and at the end of the n–th time step. As suggested by Mavriplis, (1988), the α coefficients are $\alpha_1 = 1/4$, $\alpha_2 = 1/6$, $\alpha_3 = 3/8$, $\alpha_4 = 1/2$, and, $\alpha_5 = 1$.

ENO AND WENO RECONSTRUCTION

The reconstruction procedure of the ENO schemes is based on the approximation of mean values of the primitive variables for each cell in the mesh by polynomials of one order less than the spatial order of accuracy expected. For the construction of polynomials of η–th order, one must use $N(\eta) = (\eta + 1)(\eta + 2)/2$ cells. The first step in obtaining the polynomial reconstruction for each cell is to define the possible set of cells, called stencil, that will be used. In the finite volume cell centered scheme the stencils can be selected in a Von Neumann neighborhood for a linear polynomial reconstruction, as shown in Fig. 1.

![Figure 1. Von Neumann neighborhood of the Ti triangle.](image)

As only a maximum of three polynomials can be reconstructed by the use of three neighbors, there may be problems due to overshoots and undershoots with such a reconstruction. The option adopted in this work follows the ideas of Sonar, (1997), which are to amplify the number of possible reconstructed polynomials using the neighbor cells, in the sense of cells that share a common edge, of the Von Neumann neighborhood as indicated in Fig. 2. Therefore, the number of calculated polynomials is six for the cells in regions far from the boundaries of the grid because the stencils for the cases where one has two neighbor cells of the T_6 triangle are not being considered in the calculations. In the cells that share a common edge with a ghost volume the stencils are constructed using a Von Neumann neighborhood as shown in Fig. 1.
In the present work, the cells are simply triangles and the $p(x,y)$ polynomials can then be calculated as the following formulation:

$$p(x,y) = \sum_{\mathbf{b} \neq \mathbf{a}} r_{\mathbf{b},x} \left(x - x_a \right)^{b_1} \left(y - y_a \right)^{b_2}$$

(13)

where $\mathbf{b} = \beta_1 \beta_2$, with $\beta_i \in \{1, 2, 3, \ldots\}$, x_i and y_i are the Cartesian coordinates of the barycenter of the triangle and $r_{\mathbf{b},x}$ are unknown coefficients that must be determined.

Once it is established that $p(x,y)$ is a good approximation to the mean values of primitive variables for each cell one can write a linear system, $\begin{bmatrix} R \end{bmatrix} \begin{bmatrix} \mathbf{r} \end{bmatrix} = \begin{bmatrix} \mathbf{f} \end{bmatrix}$, of $N(\eta)$ equations for the $N(\eta)$ unknowns $r_{\mathbf{b},x}$. Here, $\begin{bmatrix} R \end{bmatrix}$ is the matrix of control volume moments as in Gooch, (1997), computed using a scaling technique proposed by Friedrich, (1998) to circumvent a poorly conditioned matrix. Moreover, \mathbf{r} is the vector of unknown $\beta_1 \beta_2$ and \mathbf{f} is the vector with the mean values for each primitive variable. The stencil is considered admissible if $\begin{bmatrix} R \end{bmatrix}$ matrix is invertible. There are other approaches for the calculation of the polynomials, as the one proposed by Abgrall, (1994), which uses interpolation through barycentric coordinates, or the one proposed by Hu and Shu, (1999), which is based on reconstructing high order polynomials using only linear polynomials. These alternate approaches, however, are beyond the scope of the present paper.

After the polynomial reconstruction is performed for each cell, the next step is to verify which polynomial is the less oscillatory to use in the ENO scheme. The oscillation is computed using some indicator that assesses the smoothness of $p(x,y)$. Abgrall, (1994) proposed the oscillation indicator defined as

$$OI_{ab} = \sum_{\mathbf{b} \neq \mathbf{a}} \left| r_{\mathbf{b},x} \right|^2$$

(14)

which is the absolute value of the summation of the highest degree polynomial coefficients. Harten and Chakravarthy, (1991) proposed the indicator given by

$$OI_{BC} = \sqrt{\sum_{\mathbf{b} \neq \mathbf{a}} \sum_{j=1}^{n} r_{\mathbf{b},x}^2}.$$

(15)

Jiang and Shu, (1996) proposed an indicator, which was later modified by Friedrich, (1998), and that can be expressed as

$$OI_{JS} = \sqrt{\sum_{\mathbf{b} \neq \mathbf{a}} \int_{V} \left(\frac{\partial \mathbf{v}}{\partial x} \cdot \frac{\partial p(x,y)}{\partial x} \right)^2 dxdy}.$$

(16)

The first two oscillation indicators were tested and compared in the present work.

Differently from the ENO schemes, the WENO schemes use all the calculated polynomials. These polynomials are added together through the use of weights which are computed for each one of the polynomials as proportional to its respective oscillation indicator. The main idea in the WENO reconstruction is to attribute the computed weights for each polynomial with the aim of reconstructing a new polynomial as $p(x,y) = \sum_{i=1}^{m} \omega_i \cdot p_i(x,y)$. The weights are of order one in the smooth regions of the flow and are of order h^n in the regions with discontinuities, where h is the mesh width and m is the number of admissible stencils for the reconstruction of $p(x,y)$. The weights can be computed as

$$\omega_i = \frac{\left(\varepsilon + OI(p_i(x,y)) \right)^{\theta}}{\sum_{i=1}^{m} \left(\varepsilon + OI(p_i(x,y)) \right)^{\theta}},$$

(17)

where ε is a small real number used to avoid division by zero and θ is a positive integer.

RESULTS AND DISCUSSION

The present section discusses computational results which were obtained with the objective of verifying the new implemented capability and assessing its advantages/disadvantages with regard to the discretization methods previously available in the code. Hence, the test cases here analyzed were selected among those for which analytical solutions and/or well documented, independent data are available in the literature.

The first case shown is a shock tube problem with height 10.0 and height 1.0 dimensionless units. The entire mesh, with 4697 nodes and 8928 volumes, and a detailed part of it are shown in Fig. 3a and 3b, respectively. The results presented here are for pressure ratios, p_1/p_4, of 5.0 and 100.0. Here, p_1 denotes the...
initial static pressure in the driver section (high-pressure side) of the shock tube, whereas p_4 denotes the corresponding initial static pressure in the driven section (low-pressure side) of the shock tube. In both test cases, density was made dimensionless with respect to the initial density and pressure was made dimensionless with respect to the characteristic speed of sound, both with respect to the driver section of the shock tube. It was assumed that both sides of the shock tube were originally at the same temperature.

![Figure 3a. Entire mesh for the shock tube problem.](image)

![Figure 3b. Detail of the mesh for the shock tube problem.](image)

Figures 4 and 5 present the results for the flow in the shock tube with initial pressure ratio of $p_1/p_4 = 5.0$ for an instant of time equal to 1.0 sec. after diaphragm rupture. The results are presented in terms of density and Mach number distribution along the shock tube centerline. The results are plotted for the second-order ENO and WENO schemes implemented with different oscillation indicators and for the van Leer scheme with multi-dimensional minmod limiter (Azevedo, 1998). The analytical solution is also plotted with the purpose of comparing the accuracy of the numerical solutions.

![Figure 4. Comparison among ENO, WENO and van Leer MUSCL second-order methods for the shock tube problem with pressure ratio $p_1/p_4 = 5.0$ at $t = 1.0$ sec. after diaphragm rupture. Density along the centerline of the shock tube.](image)

In this problem, a normal shock wave moves from the driver section of the shock tube to the driven section. As the normal shock wave propagates to the right with some velocity, it increases the pressure and induces a mass motion of the gas behind it. The interface between the driver and driven gases is represented by a contact discontinuity. An expansion wave propagates to the left, smoothly and continuously decreasing the pressure in driver section of the shock tube. All these physical phenomena are well captured by ENO and WENO schemes as can be viewed in Figs. 4 and 5.

![Figure 5. Comparison among ENO, WENO and van Leer MUSCL second-order methods for the shock tube problem with pressure ratio $p_1/p_4 = 5.0$ at $t = 1.0$ sec. after diaphragm rupture. Mach number along the centerline of the shock tube.](image)

![Figure 6. Comparison among ENO, WENO and van Leer MUSCL second-order methods for the shock tube problem with pressure ratio $p_1/p_4 = 100.0$ at $t = 1.0$ sec. after diaphragm rupture. Density along the centerline of the shock tube.](image)
The second test case is a compressible flow in a channel with a forward-facing step that is well documented in Woodward andColella, (1984). The channel length is 3 with height 1 dimensionless units. The step is located in a position 0.6 dimensionless units from the channel entrance. It has a height of 0.2 dimensionless units. The entire mesh has 7022 nodes and 13608 volumes. A complete view of this mesh, together with a blow-up view of the step region, can be seen in Figs. 8a and 8b.

An uniform Mach number of 3.0 inflow is set at t=0 sec. for a gas with density made dimensionless with respect to the entrance conditions and pressure made dimensionless with respect to density times speed of sound squared. These properties were made dimensionless as in Abgrall, (1994). One should observe that this test case is unsteady. Results at t=1.5 sec. are plotted in terms of density contour lines in Fig. 9 for the ENO scheme and in Fig. 10 for the WENO scheme. At this instant of time, a detached shock is formed in front of the step and it reflects first in the upper surface of the channel and, second, in the upper surface of the step. As can be observed in Woodward and Colella, (1984), the positions of the shock and shock reflections are the same. However, their capture is sharper in the cited reference due to a more refined mesh. A slip line that appears due to the interaction between the shock created by the expansion wave at the corner and the reflected shock is captured in the present computations with a bit more smearing than in the cited reference.

Figure 7. Comparison among ENO, WENO and van Leer MUSCL second-order methods for the shock tube problem with pressure ratio $p_1/p_4 = 100.0$ at $t = 1.0$ sec. after diaphragm rupture. Mach number along the centerline of the shock tube.

Figure 8a. Entire mesh for the channel.

Figure 8b. Detail of the mesh in the step corner region.

Figure 9. Density contours for the flow in the channel for the ENO method at $t = 1.5$ sec.
This behavior is different from what can be seen in Figs. 9 and 10 for $t=1.5$ sec., and it is in agreement with the results in Abgrall, (1994) and Sonar, (1997). The slip line that appears coming from the lambda shock can be seen in the density contour lines. The positions of the shocks are in good agreement with the data available in Woodward and Colella, (1984), despite the fact that they are better captured in the cited reference and that in the present work no special treatment was applied to the corner step region. In general the results are very similar to those presented in Abgrall, (1994) for second and third order ENO schemes and Sonar, (1997) for second order ENO schemes.

The last test case considered here is the transonic flow over a NACA0012 airfoil with zero degree angle-of-attack. The freestream has a Mach number value of $M_{\infty} = 0.8$. The pressure and density were made dimensionless with respect to the freestream conditions. This case was computed using an unstructured mesh with 4369 nodes and 8414 volumes and one can see a detail of it in Fig. 13.

This is a steady case and, here, the CFL number was set as a constant value. Therefore, differently from the previous unsteady computations in which the time step was set constant throughout the flowfield, the CFL number is kept constant through the flow in the present steady computation. Hence, one sets the CFL number and the local time step is computed using the local grid spacing and characteristic speeds. The numerical results are plotted in Fig. 14 for pressure contours and in Fig. 15 for the C_p distribution along the airfoil chord using the WENO scheme and for an experimental test obtained from Scalabrini, (2002).

One can observe the accuracy of the method in capturing the shock over the airfoil. The circles represent the experimental data and the triangles represent the results obtained with the WENO scheme.
CONCLUSIONS

The reconstruction of essentially non-oscillatory (ENO) schemes and weighted essentially non-oscillatory (WENO) schemes is presented in this work with some results that have shown the accuracy of the methods. The theoretical formulation included the spatial discretization and the temporal discretization, with details of the ENO and WENO reconstruction in a generic framework to facilitate the use of polynomials of any order of accuracy. Nevertheless, in this paper, only second-order accurate schemes are shown. The cost of the ENO and WENO schemes is almost the same, because the additional work required for a WENO implementation is the computation of the weights and of the new polynomial, which is negligible compared to the overall cost of a time step. The cost of the van Leer method is about three times smaller than the cost of the ENO or WENO methods.

Three test cases are studied in this work with the purpose of comparing the results for ENO and WENO schemes with analytical data, experimental data or other second-order methods already tested and validated by the group. The first test case studied is the classical shock tube problem for two different pressure ratios. The unsteady flow in a channel with a forward-facing step, well documented in Woodward and Colella, (1984), and the transonic steady flow over a NACA0012 airfoil are also studied. The ENO and WENO schemes have shown to be more accurate capturing the discontinuities appearing in the test cases analyzed. Future work will consider higher order reconstruction through the implementation of third-order and fourth-order ENO and WENO schemes. As discussed, however, the framework for such implementation is already available with the work presented in this paper.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of Fundação de Amparo à Pesquisa do Estado de São Paulo FAPESP through a Masters Scholarship for the first author under the grant 03/10047-2.

REFERENCES

Received: September 06, 2006
Revised: October 06, 2006
Accepted: November 06, 2006