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ABSTRACT   

 

This work consists of a comparative study between two standing wave 

thermoacoustic engines that differ in the geometry of their resonant chambers, 

but hold the same internal elements and operate at the same fundamental 

frequency and boundary conditions. One of the engines consists of a straight 

tube of circular cross-section as its main part that defines a resonant acoustic 

waveguide, while the other one consists of, in addition to a similar straight tube, 

also a conical bulb connected to one of its ends acting as a coupled Helmholtz 

resonator. According to the literature, the Helmholtz cavity causes a higher pitch 

quality in the first harmonic mode, which is of greatest interest from the 

energetic point of view. The main objective of this work is to verify and evaluate 

such an effect on the engine performance so that to explore its optimization by 

means of frequency and geometric. Both engines are simulated in the DeltaEC 

software. DeltaEC, however, does not include harmonics other than the 

fundamental one. Understanding of the influence of higher acoustic modes may 

lead to a better management of the thermoacoustic engine configuration towards 

higher thermal efficiencies.  

 

 

1. INTRODUCTION   

  

Thermoacoustics is a branch of acoustics that 

studies the thermoviscous interactions between 

gaseous resonant acoustic particle and solid 

substrate, so that the resulting heat transfer occurs 

in an orderly fashion. Depending on the heat 

transfers directions, the thermoacoustic cycle may 

perform as engine (prime-mover) or refrigerator. In 

the case of a thermoacoustic engine, acoustic 

oscillations are spontaneously generated within a 

porous material internal walls, called stack, as an 

irreversible process oriented to lower a previously 

imposed thermal potential along the stack.  

Therefore, whenever a sufficiently high 

temperature gradient is established, thermal energy 

is converted into mechanical energy in the acoustic 

form as a consequence (Rott, 1980). Essentially, to 

ensure the onset temperature gradient, proper heat 

exchangers are to be installed at both stack ends 

(Swift, 1988). 

Either standing or traveling waves may be 

generated within a thermoacoustic device, 

depending on its waveguide network configuration. 

For each case a suitable pore material can be chosen 

(Swift, 2002), and the corresponding 

thermoacoustic cycle can approach the Brayton or 

Stirling cycle regarding their respective efficiencies 

(Swift, 1988).  

Among  some important advantages of both 

types of thermoacoustic engines over the more 

traditional ones is the fact that they have no moving 

parts, nor do require mechanical sealing or 

lubrication; besides, despite of their lower thermal 

efficiency, thermoacoustic engines more are 

capable of regenerating energy from low-grade heat 

source, which is of sustainability value. Therefore, 

any progress towards this feature enhances a key 

potential for viable thermoacoustic engines; among 

them, mitigating harmful resonant modes standing 

wave engines employing Helmholtz resonators. 

In this work, we investigate the relevance of 

harmonic modes higher than the fundamental one 

on the thermoacoustic engine efficiency. Once the 

thermoacoustic effect is triggered, several 

harmonics are generated in addition to the first 

harmonic. These higher harmonics are integer 
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multiples of the fundamental frequency. "One 

could imagine a deliberate use of such harmonics to 

enhance some desired aspect of performance, but 

in our experience harmonics have only been 

harmful to system efficiency" (Swift, 2017). 

According to the literature, such modes are harmful 

with respect to the engine efficiency, despite of its 

counter intuitiveness, as one would expect only 

contributive participation of each mode (Swift, 

2017) 

According to Yurii A. Ilinskii (1998), who 

studied standing wave thermoacoustic engines, 

conical and bulb-shaped resonators generate 

harmonics inefficiently because of dissonance, 

unlike cylindrical ones. This inefficiency in the 

generation of harmonics interests us enough to 

suppress them. Experiments have always supported 

this behavior, which have justified the use of 

harmonic suppressors so that to better tune the 

fundamental mode, of greater energetic interest; 

e.g. A. H. Ibrahim and Rahman (2013).  

As an attempt to better investigate this harmful 

effect, we design and simulate two simple standing 

wave thermoacoustic engines in the software 

Design Environment for Low Amplitude 

ThermoAcoustic Energy Conversion (DeltaEC), 

from where the database used for analysis is 

extracted. One engine is essentially a straight 

waveguide and another one prevents the onset of the 

second harmonic by means the use of Helmholtz 

cavity.  

This software numerically integrates Rott’s 

acoustic wave propagation equation (Rott, 1980) in 

one dimension. The program allows manipulating 

thermophysical and geometrical in order to explore 

specific results. DeltaEC performs integrations 

using the shooting method along with guesses and 

targets. Guess and targets are resources that the 

program provides for handling unknown values 

based on known parameters established by the user. 

The convergence or divergence of simulations 

depend on the appropriate manipulation of guesses 

and targets, confronted with already defined 

boundary conditions.  

Both thermoacoustic engines are designed 

based on the first-mode frequency of the porous 

material. We focus the investigation on the effects 

of the second harmonic. For that, the optimization 

of thermoacoustic engines through harmonic 

suppression is analysed. The thermoacoustic 

engines are compared for different geometries, kept 

the same boundary conditions. The difference in 

geometry is due to the presence of a Helmholtz 

resonator coupled to one of the engines. The 

Helmholtz resonator is a device that filters out 

unwanted harmonics in oscillations and favors the 

frequency range close to the first harmonic. 

Ferro and Bannwart (2020) carried out tests with 

the DeltaEC software and verified the greater 

efficiency of thermoa- coustic engines operating at a 

single frequency, using the inverse matrix method. 

This work revealed parameters that were not 

obvious and allowed an investigation and 

exploration of other variables based on them, as 

well as an improvement in the efficiency of the 

thermoacoustic engine. 

The objectives of this work are to verify and 

evaluate the benefit of harmonic suppression by 

means of simulations and experiment, confronted 

with analytical modeling. A test rig is being 

designed and built aiming to provide unequivocal 

evidence of the effect. 

  

2. DEVELOPMENT 

  

2.1  Harmonic Generation 

  

The Navier-Stokes equation from fluid mechanics, 

represented here by Eq. (1), contains terms that can 

generate harmonics and contribute to non-linear 

effects. 

 

                ρ (
∂V

∂t
+ V ∙  ∇V) =  −∇P + ∇  ∙σ⃗⃗ ⃗⃗               (1) 

 

Where the term 
∂V

∂t
 is the change in velocity with 

time, V ∙  ∇V is the convective term, and ∇P is the 

pressure gradient. 

In Eq.1, the term σ⃗⃗ ⃗⃗  is the stress tensor composed of 

nine shear stress components. Generally, gradients 

caused by viscosity can be negligible, and fluid motion 

can be treated as incompressible when we consider the 

effects of momentum. 

With these approximations, Eq.(1) can be simplified 

to: 

 

                 ρ (
∂V

∂t
+ V ∙  ∇V) =  −∇P +  μ∇2V      (2) 

 

or 

 

   ρ (
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
) = −

∂P

∂x
+ 

                                           + μ (
∂2u

∂x2 + v
∂2u

∂y2 + w
∂2u

∂z2)    (3) 

 

In the x direction:  

 

                     ρ (
∂u

∂t
+ u

∂u

∂x
) = −

∂P

∂x
+

∂2u

∂x2          (4)  

 

This approximation is more than sufficient to deal 

with thermoacoustic problems (Swift, 2017). 

The term responsible for the generation of 

harmonics is contained in 
ρ∂V

∂t
, or 

ρ∂u

∂t
, in the x 

direction only. To obtain this term, consider Rott’s 
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acoustic approximations, in which the wave 

propagates only in the x direction and therefore the 

velocity is: 𝑉 = 𝑢 ∙ 𝑖, because 𝑣 and 𝑤 are zero. 

Writing 𝜌 and 𝑢 in complex notation, we have:  

 

ρ = ρm + ρ1,  

u = u1  

 

Where the subscript 1 means complex variable 

and correspond to the acoustic fluctuation. 

Considering only the real parts of 𝜌 and 𝑢, we can 

write: 

 

ρ = ρm + ρ1 cos(ωt), 

 u = −ωξ1sin (ωt).  

 

Where u1 and ξ1 are the complex amplitudes of 

velocity and displacement, respectively. 

Developing the term 
ρ∂V

∂t
 we get the following 

expression: 

 

[ρm + ρ1 cos(ωt)] × [−ω2ξ1 cos(ωt)],  
−ρmω2ξ1 cos(ωt) − ρ1ω

2ξ1 cos(ωt) cos (ωt) 

 

[ρm + ρ1 cos(ωt)] ×
∂

∂t
 [−ωξ1 sin(ωt)],  

 

From trigonometric identity: 

 

cos(ωt) cos(ωt) =
1

2
 [1 + cos(2ωt)]  

 

According to Swift (2017), once a frequency 2ω 

is present, its interaction with the fundamental 

oscillations ω occurs via nonlinear terms, and 

consequently these terms leads to waves with 

oscillations at 3ω because cos(ωt) × cos(2ωt) =
1

2
 [cos(2ωt)]  × cos (2ωt)]. Therefore, in accordance 

with experimental observation, Swift (2017) 

concluded that higher har monic modes impair the 

efficiency of thermoacoustic engines. 

 

2.2 The Helmholtz Resonator 

  

The Helmholtz resonator is a volume V with rigid 

walls and a neck of area A and length L that can be 

modeled as lamped-parameter. In this work, the 

Helmholtz resonator is used to filter frequencies close 

to the first harmonic and eliminate unwanted 

harmonics. The following formula determines your 

resonant frequency: 

 

                                   f =
c

2π
√

A
L′V′

                      (5) 

 

Where c is the speed of sound, A is the neck area and 

V is the volume of the bulb.  

Equation 5 is not suitable for calculating the 

resonator parameters in thermoacoustic engines, as it 

was obtained for empty tubes under different 

conditions.  

In the development of Eq. 5 the waveguide 

provides an inertance and the bulb volume provides a 

compliance. Reactance is the imaginary part of 

impedance, and here in the tube-sphere system, it de- 

pends on the combination of inertance and 

compliance. The resonance condition occurs when the 

reactance goes to zero, resulting in Eq. 5.  

However, in thermoacoustic engines, the 

waveguide contains heat exchangers and a porous 

material, which provide some kind of resistance that 

was not considered in the development of this 

equation. The results obtained by the simulations in 

DeltaEC do not correspond with the results obtained 

analytically by Eq. 5. 

 

2.3 Stack 

  

The component that maintains the temperature 

gradient in the oscillating fluid is the porous material, 

the heart of the thermoacoustic engine. This 

component has some essential characteristic lengths. 

One of them is the thermal penetration depth, which 

was used to dimension the thermoacoustic engine.  

The thermal penetration depth is a characteristic 

length that is perpendicular to the direction of fluid 

motion. This length measures how far heat can diffuse 

sideways during a time interval of the order of the 

oscillation period divided by π. Its expression is given 

by Eq. 6. 

 

                                 δκ = √
2K

ωρcp
           (6) 

 

Where 𝛿𝜅 is the thermal penetration depth, K is the 

thermal conductivity, 𝑐𝑝 is the specific heat at constant 

pressure and 𝜌 is the specific mass. 

According to Russell and Weibull (2002), the idea 

is that the walls of the porous material have a layer 

separation of approximately four times 𝛿𝜅. Using this 

approximation together with the dimensions of the 

porous material, obtained experimentally, we 

determined 𝛿𝜅= 0.25mm. 

The porous material used in this work has a pore 

density of 400 CPSI and, through experimental 

measurements, the internal dimension of the pore is a 

square with side equal to 1mm and porosity equal to 

0.62. 

One of our goals is to build these engines in the 

university laboratory, for that we use the properties of 

air in the standard state of 25ºC and 1 atmosphere of 

pressure to make the project viable. The frequency 

obtained from these data for the porous material is 

𝑓 = 110Hz. 



C. E. C. R. Araujo and F. C. Bannwart RETERM – Thermal Engineering Vol. 23 (2024) No. 2 

 

33 

 

 

 

 

3. DELTAEC MODELING 

 

Nikolaus Rott was the first to derive correct 

expressions for motion, pressure, and energy transport 

in a channel with small sinusoidal oscillations and a 

temperature gradient. He proposed (Rott, 1969) the 

model described by Eq.(7): 

 

(1 +
(𝛾 − 1)𝑓𝜅
1 + 𝜖𝑆

)𝑝1 +
𝑝𝑚𝑎2

𝜔2

𝑑

𝑑𝑥
(
1 − 𝑓𝑣
𝑝𝑚

𝑑𝑝1

𝑑𝑥
) − 

 

                    +𝛽
𝑎2

𝜔2

𝑓𝜅−𝑓𝑣

(1−𝜎)(1+𝜖𝑆)

𝑑𝑇𝑚

𝑑𝑥

𝑑𝑝1

𝑑𝑥
=  0                 (7) 

 

which can be rewritten as two first-order coupled 

equations 

 

                     
dp1

dx
= −

iωρm

A(1−fv)
 U1             (8) 

 
dU1

dx
= −

iωA

ρm a
2 + (1 + (

(γ − 1)fκ
1 + ϵS

)p1 + 

 

                                +
(fκ−fv)

(1−σ)(1+ϵS)
β

dTm

dx
U1                 (9) 

 

where fv and fx are complex variables that depend 

on the properties of the gas and the size and shape of 

the pores, ϵs is the correction factor for finite solid heat 

capacity, τ is the Prandtl number, β is the thermal 

expansion coefficient, ω is the angular frequency, ρm 

is the average density, γ is the ratio of specific heats, 

A is the cross-sectional area, U1 is the volume flow 

rate, α is the sound speed, Tm is the average 

temperature and p1 is the complex pressure. 

From fluid mechanics, the momentum equation 

gives rise to Eq. (8), and the continuity equation gives 

rise to Eq. (9). 

DeltaEC uses Eqs. (8) and (9) to perform 

numerical integrations across the segments that make 

up the system. 

The capabilities and restrictions of this software 

that were used in this work is discussed below.  

In this session the main characteristics of the 

computational system that will be used to observe the 

behavior of thermoacoustic engines for different 

geometries are presented. For comparison purposes, 

both engines operate under the same working 

conditions and have the same thermoacoustic core, 

which consists of a hot heat exchanger (HHX), porous 

material (STACK), and ambient heat exchanger 

(AHX). The working fluid is air operating at a pressure 

of 1 atmosphere and a temperature of 630K.  

For the thermoacoustic engines to be in harmony 

with the speed of sound, the frequency, and the 

wavelength of the porous material, they were designed 

with a wavelength compatible with the frequency of 

the stack. To design the thermoacoustic engines, the 

porous material thermal penetration depth equation 

was used as a database. With the pressure and 

temperature conditions of the laboratory, it was 

determined that the optimal frequency for the stack 

was 110Hz. Thus, to be in tune with the porous 

material, the two engines must operate at the same 

working frequency. 

In this work, experimental computational models 

were developed for two thermoacoustic engines: one 

with a constant cross-sectional area along the entire 

length of the waveguide, here called Straight Engine 

(Figs. 1 and 2), and an engine with a cone and a 

spherical bulb at one end, called a bulb engine (Figs. 5 

and 6). The models and methods used in this work are 

detailed below. 

 

3.1. STRAIGHT ENGINE AND BULB 

ENGINE 

 

We will now deal with the main models of 

thermoacoustic engines studied in this work. These 

models were developed with a view to their 

construction for future experiments.  

The first step adopted to model thermoacoustic 

engines was to obtain the optimal frequency for the 

porous material that will be used in future 

experiments. Once we know the ideal working 

frequency, we define it as a guess so that we can 

dimension the lengths in order to obtain a frequency 

close to the stack frequency. In the case of the bulb 

engine, the dimensions of the Helmholtz resonator 

must be considered in the sizing, as they directly 

influence the system frequency.  

The hot and cold heat exchangers are maintained at 

600K and 298K, respectively, and their temperatures 

are defined as targets. In the software, the number of 

guesses needs to be equal to the number of targets; 

therefore, to correspond to these last two mentioned 

targets, we define the heat fluxes that enter and leave 

the system as guesses. Finally, at the end of the 

models, there is no air leakage; that is, the models are 

sealed, and there is no mass flow crossing the system 

boundary. In DeltaEC, this condition can be 

established by inserting a segment called HARDEND 

together with two targets.  

To match these last-mentioned targets, we define 

the volume velocity modulus and the frequency as 

guesses in the initial BEGIN segment. Next, we will 

show the configurations obtained for thermoacoustic 

engines based on the criteria mentioned above. 
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Figure 1. Straight Engine (SolidsWorks);  

Figure 2. Scheme of the Straigth Engine (DeltaEC) 

 

3.1.1. STRAIGHT ENGINE  

 

The main feature of the straight engine is a constant 

cross-sectional area throughout its longitudinal length 

and is com- posed of the following elements: BEGIN, 

SURFACE, DUCT1, HHX, STACK, AHX, 

ANCHOR, DUCT2, SURFACE, and HARDEND as 

shown in Fig. 2. The global variables are defined in the 

BEGIN segment with the following values: 1atm, 

450K, 0º of phase between p1 and u1, and |U| as a being 

guess. The hot and cold heat exchanger temperatures 

are defined as targets, and their values are 600K and 

298K, respectively; its porosity was defined as 0.75; 

and their lengths are 0.015m and 0.02m. The lengths 

of the waveguides are 2DUCT = 0.15m and 6DUCT = 

1.7m , and their diameter was defined as 40mm. The 

materials chosen to compose the heat exchangers and 

the STACK are copper and ceramic, respectively; the 

other segments are made of ideal materials. 

In Fig. 3 we can see the temperature profiles of the 

gas and the solid parts of the heat exchangers. The 

temperature gradient in the gas occurs in element 4, 

which is the stack, located between elements 3 and 5, 

which are the hot and cold heat exchangers, 

respectively (Fig. 2). This gradient is represented in 

Fig. 3 by a slight slope in the green line, and it is 

caused by the extreme temperatures of the hot and cold 

heat exchangers, represented by the black dotted line. 

The heat fluxes entering and leaving the system 

through HHX and AHX are defined as guesses. 

The ANCHOR segment replaces the standard 

thermal insulation of the segments with a system that 

treats them as if they were immersed in a thermal bath 

at the same temperature as the local gas, and this 

affects the dissipation of Htot, as can be seen in Fig. 3, 

where the Htot curve tends to zero in the regions after 

the thermoacoustic core. 

At the end of the model, to establish a sealing 

condition, we define the real and imaginary parts of 

the normalized impedance as targets in the 

HARDEND segment. It can be seen in Fig.3 that the 

acoustic power (Edot) is zero at the end of the model 

and in Fig. 4 where the |U| is zero at the end of the 

model. To match these last two targets, we define the 

volume velocity modulus and frequency in the BEGIN 

segment as guesses. 

The production of acoustic power occurs due to the 

fact that the |U| and the |p| are different from zero in 

the initial segment of the model and their phases are 

not orthogonal, as can be seen in Fig. 4. This can also 

be seen in Fig. 3, where the acoustic power is at its 

maximum at the beginning of the model. 

 

3.1.2. BULB ENGINE  

 

Unlike the Straight Engine, the Bulb Engine does 

not possess a constant cross-sectional area along its 

length; it has at one of its ends a cone and a spherical 

bulb coupled to the waveguide. These last elements 

constitute the Helmholtz resonator. This engine 

consists of the following elements: BEGIN, 

SURFACE, DUCT, HHX, STACK, AHX, ANCHOR, 

DUCT, CONE, COMPLIANCE, and HARDEND as 

shown in Fig. 6.  

The global parameters are defined in BEGIN, and 

their values are 1atm, 450K, 0º of phase for p1 and u1, 

and |U| as a guess. The hot and cold heat exchanger 

temperatures are defined as targets, and their values 

are 600K and 298K, respectively; its porosity was 

defined as 0.75; and their lengths are 0.015m and 

0.02m. The geometric parameters of the  elements are: 

2DUC = 0.15m, 6DUCT = 1.22m (with diameter 

defined as 40mm), CONE = 0.005m (input area 1.2566 

x 10−3m2; output area 4, 035 x 10−3m2), and 

COMPLIANCE= 5.5 x 10−4m3. The materials chosen 

to compose the heat                       exchangers and the 

STACK are copper and ceramic, respectively; the 

other segments are made of ideal materials. 

1 2 
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Figure 3. Temperature of the gas (green) an solid 

parts (dotted black), acoustic power (purple) and total 

power (red) profiles of the Straight Engine;  

Figure 4. Acoustic pressure amplitude (black) and 

phase (green), and acoustic volume velocity 

amplitude (gray) and phase (dashed lilac) profiles of 

the Straight Engine 

 

In Fig.7 we can see the temperature profiles of the 

gas and the solid parts of the heat exchangers. The 

temperature gradient in the gas occurs in element 4, 

which is the stack, located between elements 3 and 5, 

which are the hot and cold heat exchangers, 

respectively (Fig. 6). This gradient is represented in 

Fig. 7 by a slight slope in the green line, and it is 

caused by the extreme temperatures of the hot and cold 

heat exchangers, represented by the black dotted line. 

The heat fluxes entering and leaving the system 

through HHX and AHX are defined as guesses. 

The effect of the Helmholtz resonator can be seen 

in Fig. 8, where the curve that expresses the |U| 

undergoes an instantaneous reduction exactly at the 

point where the resonator is positioned. 

The ANCHOR segment replaces the standard 

thermal insulation of the segments with a system that 

treats them as if they were immersed in a thermal bath 

at the same temperature as the local gas, and this 

affects the dissipation of Htot, as can be seen in Fig. 7, 

where the Htot curve tends to zero in the regions after 

the thermoacoustic core. 

At the end of the model, to establish a sealing 

condition, we define the real and imaginary parts of 

the normalized impedance as targets in the 

HARDEND segment. And this can be seen in Fig.7 

where the acoustic power (Edot) is zero at the end of the 

model and in Fig.8 where the |U| is zero at the end of 

the model. To match these last two targets, we define 

the volume velocity modulus and frequency in the 

BEGIN segment as guesses. 

The production of acoustic power occurs due to the 

fact that the |U| and the |p| are different from zero in 

the initial segment of the model and their phases are 

not orthogonal, as can be seen in Fig. 8. This can also 

be seen in Fig. 7, where the acoustic power is at its 

maximum at the beginning of the model. 

 

  
 

Figure 5. Bulb Engine (SolidWorks);  

Figure 6. Bulb Engine (DeltaEC). 

 

5 6 

3 4 
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3.2. RESTRICTION TO THE FIRST 

HARMONIC  

 

An important restriction of the DeltaEC, which has 

been on focus of this work, is the fact that it only works 

with the first harmonic. This makes the software 

unfeasible for checking the effects of higher 

harmonics or their suppression (filtering), which can 

done in a test rig by means of a Helmholtz resonator. 

Therefore, we make a strategic use of the DeltaEC so 

that to aid in revealing such effects. 

 

3.3. SIMULATION RESULTS 

 

3.3.1. THERMOVISCOUS EFFECTS 

 

For the engines to operate at the ideal frequency 

of the porous material, their longitudinal lengths were 

set arbitrarily. The results obtained for the engines 

operating under the same working conditions and at 

the ideal frequency of the porous material reveal that 

the Bulb Engine reaches such a frequency decreasing 

its length. 

Along the development of thermoacoustic 

engines, some models were made with different 

configurations of guesses and targets. These models 

had their length defined as guess and their frequency 

defined as target, equal to 110Hz. The results of these 

settings also show a decrease in the linear length of the 

Bulb Engine. 

 

3.3.2. HELMHOLTZ RESONATOR 

 

In addition to the Helmholtz resonator interfering 

with the waveguide length to keep the system at a 

proper frequency, it also interferes with the|U|. 

Through the simulations, it can be seen that the volume 

of the bulb is inversely proportional to |U|, which was 

defined as a guess in the initial BEGIN segment. The 

acoustic power produced by a thermoacoustic engine 

is given by the following equation: 

 

𝐸𝑑𝑜𝑡 =
1

2
|𝑝1||𝑈1|cos (𝜙𝑝𝑈) 

 

Where cos (𝜙𝑝𝑈) is the cosine of the phase 

difference between 𝑝 and 𝑈. Through this expression, 

we can see that the acoustic power can be changed 

according to the volume of the bulb. 

 

3.3.3. FORCED SECOND HARMONIC 

 

In an attempt to simulate the effects of the second 

harmonic, some analyses were conducted with a 

frequency of 220Hz, which is an integer multiple of 

the first harmonic. Within this frequency change, we 

obtain a reduction in the acoustic power produced by 

the system. 

 
 

Figure 7. Temperature of the gas (green) an solid parts 

(dotted black), acoustic power (purple) and total power 

(red) profiles of the Bulb Engine;  

Figure 8. Acoustic pressure amplitude (black) and 

phase (green), and acoustic volume velocity amplitude 

(gray) and phase (dashed lilac) profiles of the Bulb 

Engine 

 

4. FUTURE ANALYSIS 

  

The methodology that will be addressed in the 

future in this work aims, through a practical 

experiment, to investigate the suppression of 

harmonics performed by the Helmholtz resonator. As 

the DeltaEC has the aforementioned restrictions, the 

suppression of harmonics cannot be verified by it, so 

we will do experiments to study these effects. 

This document shows the dimensions of the 

thermoacoustic engines that will be built. The 

waveguides will be made of PVC tube with an internal 

diameter of 40mm. In the region of the hot heat 

exchanger, the tube must be metallic to withstand high 

temperatures. The porous material is a ceramic car 

catalyst, which must be tailored to fill the inner 

cylindrical region of the tube and has a pore density of 

400 CPSI. The cold heat exchanger will be made of 

7 8 
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copper tubes in a transverse position to the waveguide. 

The Helmholtz resonator will have its dimensions 

estimated by the SolidWorks software, and its 

assembly will be made with PVC sheets. Part seals are 

under discussion. 

Heat will be added to the system by a nickel-

chromium electrical resistance, which will have a 

potentiometer to regulate the heat flows and adapt 

them to the problem. To remove heat from the system, 

a fluid will be pumped through the copper tubes in the 

cold heat exchanger.  

The fluids that will remove heat from the system 

will initially be water and later iron fluid. The behavior 

of fluid iron will be analyzed in a work that is being 

developed in parallel, referring to thermomagnetism. 

Both thermoacoustic engines will be receiving the 

same input power. Thus, they will have identical 

working condi- tions, as they will be in the same 

pressure and temperature environment.  

The signals will be read at the left end of the 

engines, which corresponds to segment 1 (SURFACE) 

in Figs. 2 and 6. We intend to collect the data with 

some kind of microphone and process it with Matlab 

software. 

Together with the experiments, the analytical 

development of the thermoacoustic equations will also 

be carried out, so that we can validate, through 

simulation software (Matlab or Comsol), the 

correspondence between the results of the practical 

experiments and the analytical development and, thus, 

obtain more accurate results on harmonic suppression. 

 

5. CONCLUSION 

  

This work aims to analyze the effects of harmonic 

suppression in standing-wave thermoacoustic engines. 

For this, two thermoacoustic engines with different 

geometries were developed: one with a Helmholtz 

resonator coupled to the waveguide and another 

without this resonator. The simulations were done in 

the DeltaEC software, which is limited to the first 

harmonic, and this makes the program unsuitable for 

verifying these effects. 

Due to the DeltaEC restrictions, some hypotheses 

were raised to explain the detrimental behavior of 

higher harmonic harmonics: (1) The second harmonic 

has less energy because it divides the generated 

acoustic power with the first har- monic and is less 

efficient because it is at a higher frequency, making it 

less suitable for porous material. (2) Nonlinearities in 

dynamic systems in general, present at higher 

harmonics, are usually associated with energy 

dissipation in the form of heat, which impairs 

efficiency in the second mode. (3) Higher harmonics 

impair the thermal efficiency of the cyclic mo- tion of 

the acoustic particle at the fundamental frequency, 

reducing the contrast in velocity and pressure when 

comparing extreme and central positions. 

Some results were obtained through simulations 

carried out for the second harmonic harmonic; such 

results are associated with hypothesis (1). Even if 

DeltaEC assumes that the second harmonic is the only 

existing frequency in the system, as it only works with 

one frequency, it reveals a worsening in the production 

of acoustic power, and this is in agreement with 

hypothesis (1). 

Other results showed that the engine with the 

Helmholtz resonator becomes more efficient because 

the resonator directly affects the system frequency, 

which causes a reduction in the waveguide length. 

This reduction, consequently, reduces the 

thermoviscous effect, minimizing the losses due to the 

direct contact of the gas with the solid walls inside the 

waveguide. 

A test rig is under development aiming to better 

understand the harmonic suppression and to evaluate 

our hypotheses that have been made so far. This work 

will also serve as parameter for future works that will 

involve a thermomagnetism context in the cold heat 

exchanger. 
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