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ABSTRACT

Due to global warming considerations, the European Union has banned the
use of refrigerants with a GWP greater than 150 in new passenger cars (air-
conditioning systems) and 750 for fluids used in residential heat exchangers
starting on January 1, 2017 (E. UNION, 2006). In this sense, the R1234yf
was developed which consists of a hydrofluorolefin derived from alkenes
and commercialized with the name of Opteon YF. Given the need for
research related to the use of this fluid, this work has the objective of
comparing the data of the local heat transfer coefficient in condensation
extracted from the work of Del Col et al. (2010) for flow in a mini channel
0f 0.96 mm internal diameter, with mass flux of 200, 300, 400, 600, 800 and
1000 kg-(m>-s)!' at saturation temperature of 40°C with ten different
correlations from literature as well as one neural network. It is verified that
among the correlations analyzed the one which best suited the experimental
data was presented by Cavallini and Zecchin (1974), with MRD, MARD,
and Accuracy values equal to 5.42%, 7.81%, and 96.96%, respectively. The
neural network used as a prediction model presents values of MRD,
MARD, and Accuracy equals to 2.53%, 3.66%, and 100%, respectively.

Keywords: condensation, R1234yf, heat transfer coefficient

NOMENCLATURE Re Reynolds Number
Tsat Saturation temperature, °C
b Activation factors Wi Weight Matrix
Bo Bond Number X Quality
Cp Specific heat, J-(kg-°C) ! pr Reduced pressure
D Diameter, m?
fn) Activation function Greek symbols
Fr* Froud Number
G Mass flux, kg*(m?-s)! AT Temperature Difference, K
Ga Galileo Number p Specific Mass, kg/m?
g Gravity, m-s™ At Martinelli Parameter
h Enthalpy, kJ/kg u Dynamic Viscosity, m?/s
HTC Heat Transfer Coefficient, W+(m*-K) ! o Void fraction
Ja Jakob parameter [0} Haragushi Parameter
Jg Wallis parameter c Surface Tension, N-m
I Wallis parameter adapted 0 Angle between the top and bottom of the
k Conductivity, W-(m*K)! tube in the Liquid phase, rad
n Number of values of the studied sample
Nu Nusselt Number Acronyms
Pr Prandt Number
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GWP Global Warming Potential
MARD  Absolute relative deviation
MRD Relative deviation
ODP Ozone Depletion Potential
Subscripts
b Biphasic
exp Experimental
g Vapor
1 Liquid
Ig Difference between Liquid and Vapor
lo Only liquid in the tube
mo Monophasic
pred Predicted
stra Stratified
INTRODUCTION
Refrigerants are constantly being replaced
throughout history. Until the 1920s, natural

refrigerants were used, such as propane (R290) and
ammonia (R717). However, once they have high
levels of toxicity and flammability, these fluids have
become unfeasible for residential applications. The
second generation of refrigerants was marked by
substances that presented considerable safety and
durability (Calm, 2008). However, due to the
presence of chlorine atoms in its molecular structure,
it was discovered, in the 1970s, that the use of these
fluids depleted the Earth's ozone layer.

Because of this context, several conferences
were held. In response to the Montreal Protocol (UN
Environment, 1987), in the late 1980s, the use of
hydrofluorocarbons (HFCs) began, which have low
ODP (Ozone Depletion Potential). Among the HFC
fluids, it is possible to mention the R134a, which is
one of the most used until nowadays, in domestic
refrigerators and freezers by vapor compression and
in-vehicle air conditioning units (McLinden et al.,
2014). However, even having zero ODP, such fluids
have a high GWP (Global Warming Potential) and,
therefore, can contribute to generating harmful
climate changes to the planet due to the
intensification of the greenhouse effect.

Due to Global Warming considerations, the
European Union has decided to ban, since January 1,
2017, the use of refrigerants with a GWP greater than
150 in new passenger cars, as well as the use of
refrigerants with a GWP greater than 750 in new
fixed units (E.UNION, 2006). The search for new
ecological refrigerants with zero ODP and low GWP
has begun. In this context, it was produced the
refrigerant R1234yf, from the family of
hydrofluorolefins. This fluid has a very low GWP,
zero ODP and thermodynamic properties similar to
those of R134a (Tanaka et al., 2010), so, even with
low flammability, its use is viable in automotive
systems once these already have highly flammable
fluids and in greater quantity, therefore, presenting
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itself as a potential operating niche. Thus, R1234yf is
currently being studied as a potential replacement for
R134a in automotive systems. However, more
research is needed on its behavior in refrigeration
systems, among them studies related to the transfer of
heat in condensation, since few works have been
found on this topic related to the flow of R1234yf in
smooth horizontal tubes in the technical literature.

Del Col et al. (2010) studied the local heat
transfer coefficient of R1234yf flowing in a duct with
an internal diameter of 0.96 mm. The refrigerant
presented a heat transfer coefficient lower than that of
R134a for a saturation temperature of 40°C in the
entire range of mass flux. For the mass flux of 200
kg:(m?s)!, the heat transfer coefficient was about
15% lower for the quality of 0.4 and 30% lower for
the mass flux of 800 kg-(m?-s)' and the quality of 0.3
quality. In his work, however, he did not analyze
which heat exchange-correlation would best fit the
experimental data obtained by them. Furthermore,
being the experimental data in the studied diameter
unique in the technical literature for condensation of
the fluid echo R1234yf, it is of interest to compare
them with prediction models of the condensation heat
transfer coefficient.

There are correlations in the literature that act as
predictive models. However, they were conceived
empirically for different values of mass flux, duct
diameters, and refrigerants. When they are used as a
prediction model for new fluids and in non-
conventional duct diameters, their results may differ
significantly from experimental data. In this way, the
use of neural networks as a prediction model from a
set of known experimental data is widely
recommended and serves as a reference when used
within an operating range similar to the operating
range of the data through which it was obtained. The
objective of this work is to study the use of empirical
correlations and neural networks as prediction models
of the condensation heat transfer coefficient for the
eco fluid R1234yf flowing in a mini channel of 0.96
mm internal diameter based on the data provided by
Del Col et al. (2010) in his experimental work. In the
next section, it will be presented the equations of 10
correlations of local heat transfer in condensation
from the technical literature. They were generated
from different databases with different operating
ranges and refrigerants.

CORRELATIONS FOR HEAT TRANSFER

Ten correlations from the literature were used to
analyze the heat transfer coefficient in condensation
for comparison with experimental results. These
methodologies are the correlations of Shah (2016),
Cavallini and Zecchin (1974), Dobson and Chato
(1998) and Haragushi et al. (1994), Aker (1960),
Bohdal et al. (2011), Park et al. (2011), Wang et al.
(2002), Huang et al. (2010) and Koyama et al.
(2003). They are presented briefly in Tab. 1 and in
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Tab. 2 there are presented some parameters used on
these correlations.

exp

MRD:lzn HTCI”‘?d(Z)_HTCexp(l) (1)
n - HTCexp (l )
MARD = l . Zn HTCI"'EH' (l) B HTCexp (l)| (2)
n S| HTC,_ (i) |
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Percentage of data
ACCURACY =100%— that has moved

more than 20%

3)

Where HTC)rq is the heat transfer coefficient
predicted by correlation, HTC,, is the heat transfer
coefficient measured experimentally, and (n) is the
number of values of the studied sample.

The correlations can be compared to
experimental data by the relative deviations (MRD),
by the absolute relative deviation (MARD), and
concerning the accuracy as presented in Egs. (1)-(3).

Table 1. Correlations for Heat Transfer in Condensation.
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Table 2. Dimensionless Number used in the
correlations presented in Tab. 1.
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NEURAL NETWORKS FOR PREDICTION

The learning process in a biological neuron
consists of adjusting concentrations of chemical
species in the synapses until, for a given activity, the
electrical input pulses, as well as the output pulses,
are considered effective in carrying out the same. The
central nervous system then stores the information of
the correct concentrations to be used when this

procedure is performed again. An artificial neural
network has different learning processes. Among
these, the supervised learning in which it adjusts
values  (synaptic weights and activation factors)
within a repetition algorithm until the desired
conditions are achieved. Analogously to the
adjustment of chemical concentrations in the
biological system, the network compares the output
informed by the user with that predicted by it until
there is a minimum acceptable error between the
output data predicted by the network and the output
data provided experimentally.

Figure 1 shows an example of the topology of a
neural network and Fig. 2 shows the network
architecture extracted from the software Matlab. The
process used is the supervised learning, which
consists of adjusting intermediate weights (wi) and
activation factors (bi) until their respective values
provide a minimum error between the value provided
by the network (input) and the value obtained
experimentally (output). The network architecture
consists of an input layer, which uses two neurons
associated respectively with the information of
quality and mass flux. In the intermediate layer, there
are five neurons, this quantity is chosen through
simulations with different amounts of neurons. In this
layer, the sigmoidal function was used as the
activation function, while in the output layer the
linear function was used as the activation function.
This last layer corresponds to the data of the heat
transfer coefficient.
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Figure 1. Topology of a Neural Network.
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Figure 2. Topology of the Neural Network used.
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2
f(n)—m—l (4)

n= zlswl -Input, +b, (5)

Where (w) represents the weights associated
with each neuron and (b) the activation factors.

The training algorithm used was presented by
More (1978). Egs. (4) and (5) provide the expressions
of sigmoidal function in each intermediate neuron.

The network topology has two input layers since
that for the author's data the coefficient varies with
quality and mass speed, with no data at different
saturation temperatures and duct diameters. The
experimental data were used to train, validate, and
test the neural network, presenting in these steps
correlation coefficients equal to 0.9984, 0.9978, and
0.9997 respectively. The weight matrix and the
activation factors are presented in Tab. 3.

A neural network with the weights and
activation factors presented in Tab. 3 can be
programmed in order to analyze the local heat
transfer coefficient in condensation under the
conditions studied. It has presented the average
relative deviation (MRD), absolute deviation

Table 3. Weights and Activation Factors for the Neural Network trained with an internal diameter of 0.96mm.

Intermediate layer Exit

Neuron 1 Neuron 2 Neuron 3 Neuron4  Neuron 5 Weights Exit Neuron

W1 -0439642 -3.409138  0.616271  -4.992859 -1.310514 W3 -1.430722
W2 -0.398478  -6.474541  -0.519034 -7.532807  1.920117 W4 -0.063281
Bl 0.523151  -5.881230  -0.008969  -4.494731  2.669443 W5 -0.036165
W6 -0.024252

w7 0.303437

B2 0.084123

(MARD), and accuracy better than the empirical
correlations, as expected. These values being equal to
2.53%, 3.66%, and 100% respectively.

RESULTS AND CONCLUSIONS

The data from Del Col et al. (2010) are added to
the experimental data of other researchers to generate
a larger database of the heat transfer coefficient in
condensation of the R134a eco fluid. The authors
provided the data for mass flux of 200, 300, 400, 600,
800, and 1000 kg'(m?-s)' flowing through a mini
channel with 0.96 mm of internal diameter for a
saturation temperature of 40°C.

They observed an increase in the coefficient
with the quality for all analyzed cases, which was
expected, since the thickness of the liquid film on the
tube wall decreases as the test section is passed
through by a two-phase mixture richer in vapor,
implying a lower thermal resistance of the liquid
layer and, therefore, an increase in the heat transfer
coefficient. Moreover, the production of more vapor
implies a reduction in the specific mass of the

biphasic mixture and, consequently, an increase in
the vapor velocity compared to liquid velocity.

Therefore, the effects of the drag force resulting
from the increase in shear stress are predominantly
comparing to the effects of the force of gravity. The
result is the formation of waves at the interface of the
liquid film with the vapor, increasing the surface area
of heat transfer. For low quality, on the other hand,
there is a thick layer of liquid in contact with the tube
wall and gravitational effects are predominant,
implying smooth stratified flow. Thus, the thermal
resistance of the layer is greater and the heat
exchange area is smaller relative to the case of high
quality. The result is that the condensation heat
transfer coefficient shows more modest values.

The experimental data provided by them was
compared with the correlations mentioned in Tab. 1,
through the calculation of MRD, MARD and
accuracy, to verify which one best suits the
conditions of saturation temperature in 40°C, the field
of mass flux varying from 200 to 1000 kg:(m?-s)-1
and internal duct diameter of 0.96 mm, studied by
Del Col et al. (2010).

84 Engenharia Térmica (Thermal Engineering), Vol. 20 ¢ No. 1 « March 2021 ¢ p. 79-86



Ciéncia/Science

There are presented in Fig. 3 graphs showing
the deviations from the correlations of Arkers and
Rosson (1960), Bohdal et al., (2011), Cavallini and
Zecchin (1974) and also the deviation presented by
the use of the neural network compared to the
experimental ones.

Among the correlations analyzed, the one that
best fitted the experimental data was the Cavallini
and Zecchin (1974) correlation. It has presented
values of average relative deviation, absolute
deviation, and accuracy equal to 5.42%, 7.81%, and
96.96% respectively. The MRD, MARD, and
Accuracy values of the other correlations are shown
in Tab. 4.
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Figure 3. Graphical comparison between three

correlations and the Neural Network based on the
experimental data.

Table 4. MRD, MARD, and Accuracy of the
correlations.

CORRELATIONS  MRD ~ MARD  ACCURACY

(%) (%) (%)
REDE NEURAL 2,53 3,66 100
CAVALLINI 5,42 7,81 96,96
WANG -0,15 0,17 56,06
KOYAMA -0,24 0,26 33,33
BOHDAL 0,86 0,86 9,09
CHATO 0,36 0,36 9,09
HUANG 1,19 1,20 4,54
ARKER -0,26 0,37 3,03
HARAGUSHI 1,28 1,28 1,51
PARK -0,64 0,64 0
SHAH -0,64 0,64 0
CONCLUSIONS

There are few experimental studies regarding
the measurement of the heat transfer coefficient in
condensation of the eco fluid R1234yf in smooth
horizontal ducts. Among the published ones it can be
mentioned the experimental data provided by Wang
et al. (2012) and Yang and Nalbandian (2018). Both
studied the heat transfer coefficient of R1234yf for
different values of mass flux, saturation temperatures,
and quality.

However, these authors studied the coefficient
for ducts with an internal diameter of 4 mm, while
Del Col et al. (2010) studied for the internal diameter
of 0.96 mm. Both Wang et al. (2012) and Yang and
Nalbandian (2018) presented a comparison between
their experimental data with some models of
prediction of the heat transfer coefficient. Del Col et
al. (2010), on the other hand, did not present this
comparison in his work.

Considering this context, this work analyzed the
data provided by Del Col et al. (2010) comparatively
with ten correlations of condensation heat transfer
present in the literature and also with a Multilayer
Perceptron neural network.
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The use of the neural network serves as a
reference considering that, being a computational
technique and having reliable experimental data, the
prediction model generated by it fits very well.
However, the neural network needs to be used only in
conditions similar to those which generated it, once it
has great deviations when used outside this range.

Figure 3 has presented the deviations graphs of
+ 20% between the experimental data and the
correlations. It is observed that the accuracy
presented by the neural network, as expected, is
superior to all the other three indicated.

In sequence, the values of MRD, MARD, and
Accuracy were presented in Tab. 4 for all ten
correlations mentioned in Tab. 1. The correlation of
Cavallini and Zecchin (1974) was the one that best
suited, with MRD, MARD, and Accuracy values
equal to 542 %, 7.81%, and 96.96% respectively.
Moreover, it was just slightly inferior to the model
proposed by the neural network technique, which
presented the values of MRD, MARD, and Accuracy
in 2.53%, 3.66%, and 100%.
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