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ABSTRACT  
 
In the current world scenario, there has been noted an increase of researches 
on biofuel production, more specifically bioethanol, produced from 
biomass, in order to obtain more information to analyze, understand and 
optimize this fermentative process. The modelling process, which include 
the determination of a kinetic model and its respective parameters, is a 
fundamental step in defining operating strategies and understand how the 
experimental conditions can affect the optimal system operating conditions. 
The present work employs a bayesian technique to estimate the parameters 
of a classical kinectic model used by Silva and collaborators (2016), 
because, unlike the classical techniques, it is possible to take into account 
the uncertainty of the measurements and the prior knowledge of the 
parameters can be accounted for in probabilistic terms. In this context, by 
using simulated measurements, for the parameters estimation it is propose a 
sensitivity analysis of the parameters model to define the most relevant ones 
to be estimate and the use of the Monte Carlo Markov Chain method 
through the Metropolis-Hastings algorithm, evaluating the influence of four 
types of priori probability distribution of data set: uniform, gaussian, log-
normal and Rayleigh. The obtained results showed that the sensibility 
analysis is an important step on parameter estimation and algorithm used 
was satisfactory in estimating the parameters of the kinectic model used, 
demonstrating the possibility of using it as a tool for time and cost reduction 
in experimental tests. 
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NOMENCLATURE 
 
a uniform distribution parameter 
b uniform distribution parameter 
C measurements from direct model solution 
c Rayleigh distribution parameter 
CS simulated measurements 
K kinetic constant, h-1 
k random variable with Gaussian distribution 

from Metropolis-Hastings algorithm 
K1 kinetic constant, h-1

 
KS saturation constant, g.L-1 
P ethanol, g.L-1 
Pi parameter 
Pref parameter reference 
S sucrose, g.L-1 
S1 glucose, g.L-1 

u random number with Uniform distribution 
W search step 
X biomass, g.L-1 
x random variable from the probability 

distributions 
Xi,j sensitivity coefficient 
Xpi,j reduced sensitivity coefficients 
YX/P substrate conversion factor for product 
YX/S substrate conversion factor for biomass 

Greek symbols  
 
ε perturbation 
λ random variable with Gaussian distribution 

from simulated measurements 
μ specific reproduction velocity of 

microorganisms, h-1 
μmáx maximum specific growth velocity 
π(C) probability distribution of the data. 
π(C|P) likelihood function 
π(P) priori probability distribution 
π(P|C) posteriori probability distribution 
σ standard deviation 
φ Metropolis test 
 
INTRODUCTION  

 
In Brazil, a tropical country, there is great 

potential for the use of biomass for ethanol 
production, as this is an attractive and sustainable 
energy source when compared to the fossil fuel 
energy matrix, whose burning produces large 
amounts of greenhouse gases and contributes 
significantly for global climate changes (Goldemberg 
et al., 2004; Gnansounou and Dauriat, 2005). 

In this way there has been an intensification in 
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researches on biofuel production, more specifically 
bioethanol (ethanol from biomass) in order to 
analyze, understand and optimize this fermentation 
process (Akgul et al., 2010; Corsano et al., 2011; 
Nitsos et al., 2013). The modelling process is a 
fundamental step in defining operating strategies, 
given that most of the problems reported about this 
process are the influence of experimental conditions 
on response variables, such as yield, productivity and 
conversion, and how they affect the optimal system 
operating conditions (Rivera et al., 2006). 

The determination of a kinetic model and its 
respective parameters are considered the most 
relevant stage in the study of modeling and 
optimizing a fermentation process, however some of 
these parameters cannot be obtained directly 
experimentally. Hence, some inferences are made 
with information about the reactants and products 
concentrations of the fermentative process. The 
estimation of such parameters can be performed by 
various techniques, such as the least squares, 
conjugate gradient or particle swarm, which was used 
in the reference article. However, these methods, 
unlike the bayesian techniques, do not take into 
account the uncertainty of the measurements and also 
do not allow prior knowledge of the parameters to be 
accounted for in probabilistic terms. 

In this scenario the present work aims to present 
the application of the Markov Chain Bayesian Monte 
Carlo technique (MCMC) to estimate kinetic 
parameters of a classical kinectic model employed by 
using simulated measurements to describe the 
experimental data obtained by the authors of the 
reference article “Modelling and parameter 
estimation of ethanol production in a batch reactor by 
Saccharomyces cerevisiae” (Silva et al., 2016) by 
analyzing the sensitivity coefficients of the 
parameters and evaluating the influence of prior 
probability distribution information on parameter 
estimation. 

 
MATHEMATICAL MODEL 
 

To describe the dynamics of the concentration 
of the state variables, in this case biomass (X), 
sucrose (S), glucose (S1) and ethanol (P), it was used 
an classical model, considering that the fermentation 
process occurred in batch under perfect mixing 
conditions and a sufficient stirring speed to provide a 
uniform and adequate mass transfer and substrate 
availability: 
 

dX .X
dt

= µ  (1) 

  

X/S

dS .X
dt Y

µ
= −  (2) 

  

1
1 1

dS K .S K.S
dt

= −  (3) 

  

X/P

dP .X
dt Y

µ
=  (4) 

 
This model is composed by the differential 

equations presented in Eqs. (1) - (4). In Eq. (3) was 
proposed based on the glucose reaction rate in an 
alcoholic fermentation system. The term μ (h-1) is the 
specific reproduction velocity of microorganisms, 
defined by the Monod Equation: 

 
máx

S

.S
K S
µ

µ =
+

 (5) 

 
The YX/S and YX/P terms corresponds to the 

substrate conversion factors for biomass and product, 
respectively; K1 (h-1) and K (h-1) are the reaction 
kinetic constants, μmáx is related to the maximum 
specific growth velocity and KS (g.L-1), showed in 
Eq. (5), represents the saturation constant. 

 
PARAMETER SENSIBILITY ANALYSIS 

 
In order to obtain accuracy and precision in 

parameter estimation, it is possible to analyze the 
sensitivity coefficients, which is used to determine 
the magnitude of the parameter and to evaluate the 
existence of linear dependence between the 
parameters (Beck et al., 1985) as follows: 

 
i

i, j
j

CX
P

∂
=
∂

 (6) 

 
For problems involving parameters with 

different magnitude orders, difficulties in comparing 
and identifying the linear dependence of the 
parameters may occur when using Eq. (6), This 
problem can be minimized by analyzing the reduced 
sensitivity coefficients: 

 

i , j

i
P j

j

CX P
P

∂
=

∂
 (7) 

 
As defined in Eq. (7), the sensitivity of the 

concentration Ci can be estimated in relation to the 
perturbations imposed on the corresponding 
parameters, represented by Pj. The smaller the 
magnitude of the coefficient, the harder it is to 
estimate the parameter in relation to the 
corresponding state variable (Naveira Cotta, 2009). In 
cases where an analytical solution is not available, 
the advanced or centered finite difference method is 
used. The centered finite difference method is 
considered more accurate (Ozisik and Orlande, 2000) 
and was applied in this work: 
 

i , jPX =   
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i 1, 2, j j NP i 1, 2, j j NPC (P P ...P P ,...P ) C (P P ...P P ,...P )
2

+ ε − − ε
=

ε
 (8) 

 
The perturbation value ε, presented in Eq. (8), 

should be carefully chosen to avoid numerical or 
approximation errors. 

 
BAYESIAN INFERENCE 
 

The Bayesian inference, through the theory of 
statistical inversion, aims to extract all information 
and uncertainties about the state variables of the 
studied model, in order to estimates parameters and 
state variables from observable data in a confidence 
interval. (Gianola and Fernardo, 1986; Resende, 
1999). Thus, all variables are treated as random and 
the solution of an inverse problem is obtained from 
the probability distribution of the amount of interest 
when all available information has been incorporated 
into the model. This distribution is called posteriori 
probability distribution (Kaipio and Somersalo, 
2004). 

The Bayesian analysis is based on the 
probability distribution of the parameters using all 
available information about the studied phenomenon, 
defined as priori probability distribution, π(P). After 
observing the sample data, it is possible to construct 
the posteriori probability distribution, π(P|C). In this 
way, the Bayes Theorem indicates that: 
 

( ) ( )( )
( )

P C|PP|C
C

π π
π =

π
 (9) 

  
( ) ( ) ( )P|C P C|Pπ ∝ π π  (10) 

 
 

In Eq. (9), the P and C terms indicates the 
observed parameter and experimental data, 
respectively. The term π(C|P) is the likelihood 
function and denotes the parameter information from 
the observed data for each possible value of P 
(sample distribution), while the term π(C) represents 
the probability distribution of the data. The posteriori 
probability distribution π(P|C) can be written 
according to Eq. (10). 

It is possible to calculate the likelihood function 
(Ozisik and Orlande, 2000) as follows: 
 

1 1
2 2( ) (2 ) | W |

−
π = πC|P   

med pred T 1 med pred1exp [C C ( )] W [C C ( )]
2

− − − − 
 

P P  (11) 

 
In Eq. (11), were consider that the errors of the 

measurements are gaussian, uncorrelated, additive 
and independent (Beck and Arnold, 1977; Beck et al., 
1985; Beck, 1979). The posteriori probability 
distribution contains the estimates of the parameter of 
interest, which can be summarized through punctual 

measures such as median, mode and mean 
(Gamerman and Migon, 1993). 

 
Markov Chain Monte Carlo Method  
 

The Markov Chain Monte Carlo (MCMC) 
method can be used for sampling from a priori 
probability distribution and inverse problem 
characterization (Kaipio and Somersalo, 2005). A 
Markov chain is a type of stochastic process where, 
given current behavior, the probability of any future 
process behavior is not altered by additional 
knowledge about its past behavior (Gamerman and 
Lopes, 2006). 

In order to obtain only one equilibrium 
distribution, the MCMC methods require the Markov 
chain to be homogeneous, irreducible, and non-
periodic (Ehlers, 2011). The central idea of the 
MCMC is that as the number of iterations increases, 
the initial points (burn-in period) are forgotten and 
the convergence of the Markov chain to an 
equilibrium distribution (a posteriori probability 
distribution) occurs gradually and satisfactorily to the 
distribution of interest. The generating of a sequence 
with many simulated values are used to interpret the 
characteristics of the a posteriori probability 
distribution (Gamerman and Lopes, 2006). 

The number of iterations required for Markov 
chain convergence can be determined by several 
methods described in the literature (Heidelberger and 
Welch, 1983; Geweke et al., 1994; Raftery and 
Lewis, 1991; Gelfand and Smith, 1990). 

In this work the acceptance-rejection 
Metropolis-Hastings algorithm were used and it 
works by generating a posteriori joint distribution, 
π(P1,P2...|C) from the existing conditional 
distributions (Metropolis and Ulam, 1949; Hastings, 
1970), in which a given value is generated from a 
transition kernel and can be accepted with a given 
probability.  
 
NUMERICAL METHODOLOGY 
 
Simulated Measurements 
 

To represent the experimental scenario, 
simulated measurements (CS) were generated with a 
defined uncertainty level regarding the exact solution 
(2.5% for all state variables): 
 

= +SC C σλ  (12) 
 

In Eq. (12), C is obtained in the solution of the 
direct problem, σ is the standard deviation of the 
measurements and λ is the random variable with 
Gaussian distribution N (0,1). 
 
Priori Probability Distribution 
 

Some case studies were carried out by 
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employing different priori information of the 
parameters in order to verify its influence on the 
estimation. Four types of probability distributions 
were used as priori information of the unknown 
parameters of the model, so that each model the 
uncertainties and describe the phenomena in different 
ways. The probability distributions used, considering 
a continuous random variable x: 
 

UNIFORM 
1

f (x) a x bb a
0


= < <−


 (13) 

 
GAUSSIAN 

21 1 xf (x) exp
22

 −µ = −  σπσ    
 (14) 

 
LOG-NORMAL 

21 1 ln(x)f (x) exp
2x 2

 −µ = −  σσ π    
 (15) 

 
RAYLEIGH 

2x 1 xf (x) exp
c² 2 c

  = −  
   

 (16) 

 
In Eqs. (13) to (16), the f(x) represents the priori 

probability distribution and x is the model parameter 
vector. 

The values defined for the distribution 
parameters in each case studied are shown in Table 1. 

 
Table 1. Probability distribution parameters. 

Case Probability 
Distribution Parameters 

1 Uniform a = 0*Pref            b = 3.0*Pref 
2 Gaussian μ = Pref             σ = 0.2*Pref 
3 Log-normal μ = Pref             σ = 0.3*Pref 
4 Rayleigh c = 0.25 

 
Metropolis-Hastings Algorithm 

 
This Metropolis-Hastings algorithm can be 

generalized as follows (Lee, 2004): 
 

1. Initialize the Markov chain iteration counter 
(i = 0) and arbitrate an initial value P(0); 

2. Generate a candidate value P' from the 
proposed distribution q (P'|Pi), where k is a variable 
N(0, 1) and w is the search step; 
 

(i 1)P ' P (1 wk)−= +  (17) 
 

3. Calculate the probability of acceptance (φ) of 
the candidate parameter by the Metropolis test; 
 

(i 1)

(i 1) (i 1) '

(P ' | Y)q(P ',P )min 1,
(P | Y)q(P ,P )

−

− −

 π
ϕ =  π 

 (18) 

 
4. Generate a random number u with uniform 

distribution, u ~ U (0, 1); 
5. If u ≤ φ, then the new value is accepted and 

P(i) = P'. Otherwise, reject it and make P(i) = P(i-1); 
6. Increase the counter from i to i + 1 and return 

to step 2. 
By using this algorithm, it is possible to obtain a 

sequence where the samples generated after the burn-
in period correspond to the posteriori probability 
distribution of the parameters. In this paper, were 
made inferences about this by the mean and the 
intervals of credibility (Kaipio and Somersalo, 2005). 
 
RESULTS AND DISCUSSION 
 

The present work used as reference the data 
obtained experimentally by Silva et al. (2016) and 
Table 2 presents the reference values of the 
parameters and the initial conditions of each state 
variable for the employed model. 

Initially, the direct model was solved, the 
analysis of the sensitivity coefficients of the model 
parameters was performed, followed by the 
parameter estimation through the algorithm, 
evaluating the influence of the priori probability 
distribution on the parameter estimation. 
 
Table 2. Parameter reference values and initial 
conditions of the state variables. 

State Variable Initial Condition (g/L) 
X 4.7 
S 94.0 
S1 39.0 
P 0.0 

Parameter Reference Value 
μmáx 0.1155 
K 0.4738 
K1 0.8934 
KS 24.3752 

YX/S 0.0242 
YX/P 0.0451 

 
From the information provided by the reference 

article, the direct model was solved and the dynamics 
graph of the state variables of the model was 
constructed, as shown in Fig. 1. 
 

 
 

Figure 1. Dynamic of state variables. 
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It can be observed that the solution obtained in 
the present work is in excellent agreement with the 
experimental data obtained by Silva et al. (2016). The 
dynamics of biomass, sucrose, glucose and ethanol 
coincide with the behavior predicted in the literature 
about fermentation processes. 

When it comes to the sensitivity analysis of the 
parameters, the advantage of doing this analysis 
before estimating the parameters is the possibility of 
obtain a more detailed understanding of their 
influence on state variables, especially in problems 
with a large number of parameters, since the 
sensitivity matrix evaluation is a process that takes 
time and computational cost. The sensitivity 
coefficients of the model parameters in relation to the 
state variables were evaluated, as presented in Fig. 2. 
 

 

 
 

Figure 2. Sensibility analysis of parameters for a) 
biomass, b) sucrose, c) glucose and d) ethanol, where 
state variables (black), μmáx (red) K (blue), K1 (green), 

KS (brown), YX/S (yellow) and YX/P (pink). 
 

For biomass and sucrose, only three of the six 
parameters have significant magnitude, being μmax, 
YX/S and KS. Those parameters showed themselves as 
linearly independent in the transient period of the 
graph, which may contribute to a better parameter 
estimation. For glucose, which is intermediate of the 
reaction, all parameters except YX/P had a significant 
magnitude, but only KS was linearly independent. For 
ethanol, parameters K and K1 had a minimum 
magnitude, indicating that they are not relevant for 
this state variable. On the other hand, the parameters 
that showed high sensitivity and considerable 
magnitude were presented as linearly independent, 
indicating a good fit of the model to the experimental 
data. Thus, it can be concluded that the parameters 
μmax, KS and YX/S are the parameters that, even under 
small perturbations, have significant influence on the 
state variables of the studied model. 

The cases studied covered four types of 
probability distributions. The Fig. 3 presents the 
estimation of the parameters from the convergence of 
Markov chains for all studied cases. 
 

 
 

Figure 3. Markov chain evolution for μmáx, KS and 
YX/S, where reference value (red), uniform (blue), 
gaussian (green), log-normal (black) and Rayleigh 

(yellow). 
 

Looking at Fig. 3, it can be noted that all priori 
distributions converged to a value relatively close to 
the parameter reference value, with Log-normal 
being the closest. The priori of the uniform type is 
considered non-informative and therefore the 
parameters to be estimated are put as equiprobable. 
On the other hand, the Gaussian, Log-normal and 
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Rayleigh distributions may be employed in cases 
where there is a better understanding of the behavior 
of the parameters, usually dispersed around a mean 
that representing the parameter reference value. 

The Table 3 has the results of the posteriori 
probability distribution information of the estimated 
parameters. For all parameters, the initial values were 
set to 2 times the reference values shown in Table 2. 

 
Table 3. Posterior probability distribution 
information. 

π (P) Parameter Estimative 
(mean/credibility interval) 

Uniform μmáx 
0.1243 

(0.1138 – 0.1363) 

Gaussian μmáx 
0.1140 

(0.1055 -0.1216) 
Log-

normal μmáx 
0.1144 

(0.1116 – 0.1178) 

Rayleigh μmáx 
0.1044 

(0.0986 – 0.1112) 

Uniform KS 31.2247 
(24.7450 – 39.1138) 

Gaussian KS 23.5779 
(17.8892 – 28.3819) 

Log-
normal KS 23.8156 

(22.2408 – 25.7249) 

Rayleigh KS 17.3013 
(13.6789 – 21.6429) 

Uniform YX/S 0.0243 
(0.0241 – 0.0246) 

Gaussian YX/S 0.0242 
(0.0240 – 0.0244) 

Log-
normal YX/S 0.0242 

(0.0239 – 0.0244) 

Rayleigh YX/S 0.0241 
(0.0239 – 0.0243) 

 
It is observed that the three parameters 

presented satisfactory convergence and for a 
Gaussian priori, more burn-in states were necessary 
for the convergence of the chain for an equilibrium 
distribution, resulting in acceptance rates around 
81%, while for the Uniform, Log-normal and 
Rayleigh priori, the acceptance rates ranged around 
17%, 72% and 65%, respectively. 

The acceptance rate is the ratio between the 
number of states accepted in the Metropolis-Hastings 
test and the total number of states. According to 
Albert (2009), for models with one or two 
parameters, acceptance rates up to 45% are ideal, 
being reduced to 25% for models with more 
parameters. Thus, one consequence of achieving low 
acceptance rates is to assume that the Markov chain 
remains in the same state for several iterations, on the 
other hand, for high acceptance rates, although the 
Markov chain needs fewer iterations to evolve 
convergence occurs slowly. 

Analyzing the probability distributions used as a 
priori information, the obtained results show that the 
Log-normal distribution presented the best estimates, 
indicating that this is a good alternative to be 

implemented, considering that the most used are the 
Gaussian and Uniform distributions. 

For comparison purposes, knowing that the 
Log-normal function was the priori probability 
distribution which presented the best estimates, for 
this specific case it was estimated the six parameters 
of the model and compared the fit between the 
simulated measurements and the data predicted by 
the models using three and six parameters, as shown 
in the Fig. 4. 

 

 
 

Figure 4. Model adjustment for the state variables, 
where three parameters (green), six parameters 

(red), exact solution (black), simulated 
measurements (open circles) and credibility 

interval (blue). 
 
The estimation of only three of the six model 

parameters leads to a satisfactory fit, with the 
advantage of time and computational cost reduced 
when compared to the estimation of the six 
parameters, confirming the importance of sensitivity 
analysis, especially in more complex cases where 
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they employ models with a high amount of 
parameters. 
 
CONCLUSION 
 

The present work presented parameter 
estimation through the Monte Carlo Bayesian 
technique via Markov Chains, based on the 
verification of the Metropolis-Hastings algorithm, 
performing case studies evaluating the priori 
parameter information. Thus, it is concluded that the 
parameter sensitivity analysis of the proposed model 
to describe a physical phenomenon is of fundamental 
importance so that any difficulties in parameter 
estimation, high computational cost and high time 
demand are minimized.  

The probability distribution used to represent 
the a priori information of the parameters is a key 
element in bayesian inference and, therefore it is 
essential that it be evaluated and specified from all 
available information, in order to avoid it does not 
represent well the parameter set of the model or even 
that a good fit of data occurs, but with parameters 
without scientific sense.  

From the generation of simulated measurements 
under experimental uncertainty, the algorithm used 
was satisfactory in estimating the parameters of the 
model used, demonstrating the possibility of using it 
as a tool for cost reduction in experimental tests. 
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