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ABSTRACT 

 
The occurrence of macrosegregation in alloys produced by ingot casting can 

adversely affect the quality of the final product. Macrosegregation can be 

described as a severe variation on the macroscopic scale of the chemical 

species that compose the alloy, and the ability of computational simulations 

to predict such defects remains far from perfect. Therefore, this research 

focuses on the development of a two-dimensional mathematical model that - 

through computational simulations - could be applied to study and predict 

the formation of macrosegregation in the ingot casting of binary alloys. 

Once accomplished, this work can establish the framework to new studies 

that will tackle more advanced problems, e.g., for actual ingot geometries, 

three-dimensional models and industrially-important ternary alloys. 
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NOMENCLATURE 

 

c solute concentration, wt% 

Cp specific heat, J/(kg.K) 

D diffusion coefficient 

Ga Galilei number 

Kp partition coefficient 

Lat latent heat of fusion, J/kg 

Le Lewis number 

Pr Prandtl number 

Ra Rayleigh number 

St Stefan number 

T temperature, K 

u fluid velocity, m/s 

 

Greek symbols 

 

α' thermal expansion coefficient 

Γ slope of liquidus line
 

κ thermal conductivity, W/(m.K) 

μ dynamic viscosity, Ns/m
2
 

ρ density, kg/m
3
 

τ dimensionless time
 

χ liquid fraction 

 

Subscripts 

 

0 reference value 

l liquid-phase quantity 

m mixture quantity 

s solid-phase quantity 

 

INTRODUCTION 

 

Ingots are single blocks of metal, typically steel 

and weighing from a few kilos to a few tons, which 

are created by means of a casting procedure where 

molten metal is fed into cooling mold. There, it is left 

until it completely solidifies. The applications for 

ingot casting include, according to P. Patil and 

Balasubramanian (2015), forging die blocks, heavy 

equipment, ship engine parts, pressure vessel parts, 

oil well equipment, turbine rotors, valve bodies, auto 

shafts, etc. 

To model the solidification process with the aid 

of computational simulations may help to reduce the 

cost of production and prevent defects such as 

macrosegregation. These are basically differences in 

concentration over a length scale of the ingot itself. 

They are defects whose formation a severity is very 

sensitive to the casting procedure and the ingot size 

(Pickering, 2013). 

It is understood that the causes of 

macrosegregation are related, according to (Flemings, 

1974), to the movement of liquid and solid inside the 

mushy zone. Highly segregated phases (with great 

differences in concentration) can be found in this 

region during the solidification process; it is the 

physical displacement of these phases that induces 

macrosegregation. Among other kinds of 

macrosegregation, the A-segregation, as stated in 

(Fredriksson and Åkerlind, 2006), is caused by 

natural convection in the molten metal, which in turn 

is driven by a density gradient. This kind of 

segregation importantly concerns high pressure 
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vessels manufacturers: the vessels are built through 

the removal of the internal portion of a steel ingot, 

followed by the installation of metallic parts on its 

interior by welding. However, the procedure’s 

integrity is worsened if the weld matches with A-

segregated regions, which are characteristically 

stiffer, but have less tenacity (Maidorn and Blind, 

1985). If exposed during forging or rolling operations 

to which this product is submitted, the whole ingot 

must sometimes be discarded. 

 

Computational Procedure 
 

One simple approach to model 

macrosegregation is to formulate a set of equations 

valid on all the regions mentioned before - the solid, 

liquid and mush; this is categorized as a single-

domain approach. Another approach is to develop 

equations for each one of the domains separately. The 

advantage of the former over the latter is that there is 

no need to track the solid/mush and mush/liquid 

moving boundaries that could develop with complex 

shapes as the simulation proceeds. This simplification 

can be done following Amberg (1991), by including 

terms in the original equations to keep a balance 

between solid and liquid fractions. In the single-

domain approach, it is then possible to write down 

the model considering the fundamental laws of mass, 

momentum, and energy conservation, plus 

thermodynamic relations valid for phase changes. 

 

Mathematical Expressions 

 

Assuming the solid and liquid phase densities to 

be equal, the velocity field may be obtained from a 

momentum balance valid in all three regions as 
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(2) 

 

In Eq. (2), ρ0 is the density in [kg/m³] and refers 

to initial liquid state, while the local density ρ can be 

written as a function of temperature and 

concentration measured in a certain control volume, 

such relation may be presented as soon as the solute 

concentration is adequately defined. The vector u is 

the velocity, written in [m/s]; moreover, the velocity 

in the mush must be understood as an average among 

velocities inside porous domain. μ is the dynamic 

viscosity in [Ns/m²], the pressure p is given in 

[N/m²], g stands for gravity (9.8 m/s²), χ represents 

the liquid fraction, which means the unsolidified 

portion inside a control volume, in a range from 0 

(solid) to 1 (liquid). 

Here, the permeability H(χ) measures, as stated 

by (Fredriksson and Åkerlind, 2006), the ability of 

the liquid to penetrate through the dendrites of a 

region where the solidification process has begun and 

can be given by expressions presented in (West, 

1985).  

  

 
 

Figure 1. Permeability vs liquid fraction, squares 

represent the experimental data and the solid line is 

the function used to predict the permeability.  
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The permeability is described as a function of 

liquid fraction in accordance to the applicability to 

the mush zone of metallic alloys, such expressions 

are given in Eq. (3) and behaved well when compared 

to experimental data obtained by the author, as 

exhibited in Fig.1. 

It can be observed that while the solidification 

process did not start in a certain region, i.e. (χ = 1), 

then the last term on right-hand side of Eq. (2) 

vanishes, leaving the usual Navier-Stokes equation. 

Once the solidification has started, the term 

gains importance in the equation, whilst the velocity 

tends to zero making the terms on the left-hand side 

of the equation negligible. 

The parameters Y1 and Y2 are constants obtained 

by experiments carried in (Piwonka and Flemings, 

1966), in which the values were found to be Y1 = 
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6.4e−9 cm
2
 and Y2 = 8.8e−7 cm

2
. 

The temperature in each control volume can be 

obtained from the basic heat equation in terms of a 

unique temperature, T, valid for liquid, mushy and 

solid regions: 
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(5) 

  

where Cp is the specific heat in [J/(kg.K)], κ is the 

thermal conductivity in [W/(m.K)], while L at 

represents the latent heat of fusion [J/kg]. κ can be 

written as 

  

  sl 1    (6) 

  

which constitutes a linear interpolation between the 

thermal conductivities of the solid and liquid phases. 

The boundary conditions considered in 

problems of this nature may vary depending on the 

authors approach.  
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Here, the classical Fourier law stated in Eq. (7) was 

adopted. It poses the heat flux q[W/m²] as 

proportional to the magnitude of the temperature 

gradient and opposite to it in sign, with κ as the 

constant of proportionality. Lienhard IV and 

Lienhard V (2017), where n is the vector normal to 

the boundary to which this boundary condition is 

applied. This configures a Neumann boundary 

condition used to define the heat exchange of the 

ingot surface with its surroundings. 

The mass conservation for the solute may be 

obtained, according to Amberg (1991), as 
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with diffusion coefficient D, where cl represents the 

local solute concentration in the metallic alloy, cm is 

the mixture solute concentration obtained as a 

balance between the concentrations for liquid and 

solid phase, cl and cs respectively, in the form 

  

slm χ)c(1χcc   (9) 

  

In addition, cs and cl are related to each other 

from the phase diagram (for the Fe-c system in the 

case of steel with no additional elements) by cs=Kp.cl 

with Kp as the partition coefficient. 

The boundary condition imposed here was the 

zero flux for the whole domain boundary, which 

appropriately means that there is no transport of 

solute across the walls. 

The boundary condition imposed here was the 

zero flux for the whole domain boundary, which 

appropriately means that there is no transport of 

solute across the walls. 

Now, it is possible to define an appropriate way 

to write the density ρ like a function of temperature 

and concentration as 

  

  l00 fcTTα'1ρρ   (10) 

  

Where T0 is the melting temperature for pure 

iron (0% carbon), and 

  

l100ce

d
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where the numerical parameters d, e, f are given by 

Olsson (1980) and are presented in Tab. 1. 

 

Table 1. Physical parameters adopted in the 

simulations. 

Variable Value Units 
Cp 753 J/(kg.K) 

D 1e-9 m² 

d -4.2e-4 1 

e 0.55 1 
ε  1e-6 1 

f -8 1 

g 9.8 m/s² 

Γ 7800 ◦C/wt 

κl 30 W/(m.K) 

Kp 0.42 1 

κs 60 W/(m.K 

L 0.1 m 

Lat 2.72e5 J/kg 

μ 6.94e-3 N s/m² 

ρ0 6940 kg/m³ 

q 60 kW/m² 

Ta
0 1538 ◦C 

a
from Fig. 2 

 

Observe that there is no explicit partial 

differential equation for χ; instead, its local value in 

the mushy region is given implicitly by the relation 

T=Tl(cl), where Tl is the liquidus temperature, 

determined as a function of cl from the phase 

diagram. An artificial way to ensure that this relation 

is satisfied is to introduce the equation 

  

  lcTT
ε

1

t

χ
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
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as in Amberg (1991); here, is chosen as an arbitrarily 

small parameter. The afore mentioned relation to Tl is 

given by 

  

l0ll ΓcT)(cT   (12) 
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where T0 is again the melting temperature of pure 

iron, and Γ is proportionality constant represented by 

the slope of the line in the phase diagram in Fig. 2. 

 

COMPUTATIONAL IMPLEMENTATION 

 

The methodology applied in the task of solving 

the previous set of equation, was to make use of 

Marker and Cell Method (MAC), whose key feature 

is to proceed to the spatial discretization using a 

Finite Volume Method over a staggered mesh. The 

momentum equation is solved by decoupling the 

velocities and pressure variables by the Projection 

Method, while the Adams-Bashforth/Crank-Nicolson 

(ABCN) method to make the temporal numerical 

integration.  

 

 
 

Figure 2. Phase diagram for Fe-C alloy. 
 

 

 
 

Figure 3. Cell representation for the staggered grid 

used in the MAC approach. u and v are the x and y 

components of u, respectively. 
 

The discretization follows the scheme presented 

in (Prosperetti and Tryggvason, 2007) and 

(http://www.lcad.icmc.usp.br/ buscaglia/teaching/, 1 

Oct. 2015), with centered control volumes for each of 

the variables in the problem - u, p, T and cl - as 

illustrated in Fig. 3. 

The numerical methods described above were 

implemented through an in-house script making use 

of MATLAB programming environment. 

 

RESULTS AND DISCUSSION 

 

The model consisting on the equations 

presented in Section 2. was non-dimensionalized 

using the following scales 
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where 

  

pρC

κ
α   

  

and c0 is the initial solute concentrations. Replacing 

the dimensional variables in the original equations 

and doing the algebra, allows us to identify some 

classical adimensional numbers used to characterize 

systems with fluid flow, heat and mass transfer, such 

as 
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which are known as Prandtl, Rayleigh, Stefan, 

Galilei, and Lewis number, respectively. Applying 

the relations from Eq. (13), and considering the Eq. 

(1)-(4) we obtain the non-dimensional equation for 

momentum 
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where the star (∗) denotes the variable on its non-
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dimensional form. Proceeding in the same way for 

the heat transfer, now non-dimensionalizing the Eq. 

(5), leads to: 
 

τ
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1
TTχu
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Finally, the non-dimensionalized form of Eq. (8) 

to model the solute conservation becomes: 
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The solution for the non-dimensionalized set of 

equations and adequate boundary conditions was 

approximated by computation simulation applying 

the presented methodology in a domain 20 cm wide 

and 10 cm high, with insulated top and bottom walls, 

cooling from the sides at the same given rate q. Thus, 

horizontal symmetry is assumed and the dependent 

variables: temperature, pressure, velocities, 

concentration and liquid fraction are computed for 

just half of the original domain. The other parameters 

used in the simulation can be found in Tab. 1. 
 

 
 

Figure 4a. Liquid fraction after 200 s as presented in 

Amberg (1991). 
 

 
 

Figure 4b. Liquid fraction after 200 s obtained by authors. 
 

The resulting liquid fraction after 200s of 

solidification is shown in Fig. 4(a)-4(b) with 

contour lines drawn across the domain. 

 
 

Figure 5a. Solute concentration after 1800s as 

presented in Amberg (1991). 
 

 
 

Figure 5b. Solute concentration after 1800s 

obtained by authors. 
 

 
 

Figure 6a. Velocity field for the domain half 

occupied by mush, half occupied by liquid phase, at 

an early stage of solidification process. 
 

 
 

Figure 6b. Streamlines obtained from the 

velocity field from Fig.6(a). 
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Figures 5(a)-5(b) compares the solute 

composition of the binary Fe-C alloy after 6000s of 

solidification, both images show relatable differences 

in concentrations obtained across de domain, with 

lower concentration at the bottom and higher 

concentration at the top. Figure 6(a) illustrates the 

deceleration of velocity field for the region with 

lower liquid fraction, while Fig. 6(b) shows the 

corresponding streamlines. 

 

CONCLUSIONS 

 

It can be noticed, that the regions with constant 

values of liquid fraction are distributed across the 

domain, in accord with the expected results, while the 

macrosegregated regions were found in the 

simulation as in the original paper (Amberg, 1991): 

greater than average solute concentration in the upper 

region, and lower than average at the bottom. Besides 

that, the flow recirculation in the liquid region is in 

an opposite direction to that in the mushy region, also 

in accord with theory (Fredriksson and Åkerlind, 

2012). 
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