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OMENCLATURE

r  Cross-sectional area to the pipe, m’

*  Velocity field, m/s

> Velocity on the pipe shaft, m/s
VX Relative dimensionless velocity
VX Average velocity, m/s
VX, Velocity of model
Greek symbols
o Relative velocity coefficient
p Density, kg/m’

Subscripts
exp Experimental
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ABSTRACT

This research proposes a new method to establish the velocity field and the
dimensionless velocity profile for Newtonian and non-Newtonian flows
inside a circular tube. Several studies developed regarding different fluid
types (such as potency law fluid, Bingham and Herschel-Bulkley, among
others) observed that a rational or irrational polynomial was used for the
dependent velocity field variable. Thus, a rational polynomial was
established as a starting point for this research as the dependent velocity
field variable. Dimensionless velocity profiles obtained from the proposed
fluid-dynamics model were experimentally compared only with
dimensionless velocity profiles for non-isothermal Newtonian flows of
glycerol, in cooling as well as heating. On the other hand, it was possible to
calculate that RMS errors found using relative dimensionless velocity data
obtained from the proposed fluid-dynamics model creates very small errors,
which are comparable to RMS errors found using data obtained from
application of a numerical method. Finally, the proposed fluid-dynamics
model was validated with a dimensionless velocity profile obtained from the
flow of a cooling process, resulting in the validity of the proposed model.

Keywords: rheology, velocity profile, non-isothermal fluids, circular tube

Superscripts
X Axial direction to the tube
INTRODUCTION

Research regarding the rheology of Newtonian
and non-Newtonian flows inside channels of different
transversal sections and circular section tubes is
currently very developed (Choi et al., 2016). There is
a certain assurance for the study of Newtonian flows.
However, researches for non-Newtonian flows are
still being developed. A rheological model is initially
chose for study of non-Newtonian flows (Irgens,
2014), with a starting point being the relation of
shearing tension to shearing rate (velocity profile),
for different rheological models, such as potency law,
Bingham, Herschel-Bulkley, among others (Lopez-
Carranza, Jenny, Nouar, 2012; Peixinho et al., 2005).
All of these models are restricted to border conditions
of flow inside the channel or tube. Maybe the most
common rheological model is the potency law model
(Giizel, Frigaard, Martinez, 2009; Hanley, Cronin,
Byrne, 2013), and the general model would be the
Herschel-Bulkley (Ancey, Bates, 2017; Bentrad et
al., 2017). A consequence of choosing a good
rheological model is a good agreement between the
profiles for experimental velocity and analytical or
simulated velocity. The Dutch engineer Pieter Barteld
Kwant was one of the first researchers to work with
non-Newtonian flows. In the theoretical research by
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Kwant, Zwaneveld and Dijkstra (Kwant, Zwaneveld,
Dijkstra, 1973b) for non-isothermal flows, the
potency law model was employed to study velocity
profiles using two methodologies: an approximate
method (includes the mass conservation equation and
momentum equation) and a numerical method
(includes previous equations, plus the energy
equation). Later on, research conducted by Kwant,
Fierens and Van Der Lee (Kwant, Fierens, Van Der
Lee, 1973a) produced experimental results to validate
theoretical results from the work of Kwant,
Zwaneveld and Dijkstra (Kwant, Zwaneveld,
Dijkstra, 1973b).

Normally, several research studies use the
computer fluid dynamics (CFD) for flow modeling
(Martins et al., 2014, 2016; Wang, Zhang, Wang,
2013). The CFD model employs border conditions,
the mass conservation equation, the momentum
equation, among others. Advancements regarding the
study of non-Newtonian flows is diverse, such as the
study of the tube inclination effect over the removal
dynamics of a viscous-plastic fluid by a Newtonian
fluid (Alba, Frigaard, 2016), the behavior of a
Herschel-Bulkley fluid layer when it is suddenly
inclined and subjected to gravitational forces (Ancey,
Bates, 2017), the effects of the velocity profile in the
entrance of a cooling channel over flow (Kim et al.,
2016), the study of the velocity profiles (before and
after a porous zone) of a turbulent flow in a straight
channel (Choi et al, 2016), or the thermal
conditioning in the tube wall (Bertsche, Knipper,
Wetzel, 2016; Tu et al., 2015; Weigand, Abdelmoula,
2014).

Wang et al. (2017) performed one interesting
study, in which a rheological model was not used for
modeling the velocity profile of a heterogeneous
flow. These authors established a rational polynomial
in the variable depending on the velocity field in
order to model the velocity profile. Such rational
polynomial has 10 terms, which are based on space
coordinates, tube diameter, particle size, ice fraction,
and average flow velocity. The idea to establish a
rational polynomial to a depending variable for the
velocity field was also employed in another study
(Amaro, Hernandez, Olivencia, 2015).

This current research consists on modeling
dimensionless  velocity profiles for laminar
Newtonian flows in which the tube wall temperature
was constant for each experiment. In order to do that,
a generalization was employed regarding the
polynomial expression proposed in the previously
mentioned research (Amaro, Hernandez, Olivencia,
2015) for the dependent velocity field variable. This
polynomial expression was restricted by appropriate
border conditions as those used in previous
researches that used rheological models.

MATERIALS AND METHODS

In order to define the velocity field dependent
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variable (considering only the velocity axial
component) of a flow for any fluid inside a circular
section tube, a rational polynomial was employed,
which was much simpler than the one employed by
Wang et al. (2017).

X —
v (er,ee,ex,etl,etz,...,etj,eT)—
n

X i
Z Vi (ee,ex,etl,etz,...,etj,eT)er +
i=l

X
Vshaft(exaetlaetza---aetjaeT) (1)

The velocity field dependent variable is defined
on Eq. (1), where e, ¢ and e,, are the independent
variables, which depends on internal radius, the
angle, and position regarding the beginning of the
tube, respectively. They are independent variables

that relate cylindrical coordinates. The e,
]

independent variable is an average thermodynamic
parameter (or a parameter that relates a
thermodynamic property in an implicit manner)
evaluated in a certain transversal section (St) to the
tube or it is characteristic for all the tube (for
example: constant temperature or constant heat flow).
Finally, the er independent variable is the time
variable. Some considerations were formulated,
which are presented as follows:

i) The tube through which the fluid flows is
internally smooth and it is placed on a
horizontal position.

ii) The flow under study
hydrodynamic development.

iii) A value of n=3 was employed to evaluate the
velocity field dependent variable.

iv) The flow regimen is stationary.

v) The velocity field is independent from the e
variable.

vi) Due to denotative simplicity, only one
thermodynamic parameter was employed and
named as e (but some change in such
consideration can be modified in future studies,
without any problem).

vii)The following notations were established by
denotative simplicity:

is in complete

(er’ex’et):<er,x,t) )

(ex-e0)=(exy) 3)

The internal radius and the tube transversal
circle area are named as R and Ar, respectively.

“)
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The e, independent variable was defined in Eq.
(4), as 0 < r < R. Definition of e, and e, independent
variables will depend on the study which will be
chosen as a reference.

It is important to notice that it was not
established if the flow regimen is laminar, transitory
or turbulent, since it was not defined if the fluid is
incompressible due to the dependence of the behavior
regarding the thermodynamic parameter along the
flow. D, and Dy are non-empty sets in which their
elements are (e.x;) and (ey), respectively. The
simplified velocity field (by previous considerations)
and the flow density (p) were established as real
functions defined in the D, x; domain.

VX (er,x,t)
SV (o) 3 e )
"'Vlx (ex,t )er + Vs)ilaft (ex,t ) (5)

Equation (5) shows a simplified expression of
the velocity field dependent variable.

p(er, ,t) V¥ (er, ,t) dA
Pm,x (ex,t) = IST - - (6)
J'STV" (erx) dAT

(7

anl (ex,t ) =

On the other hand, it was necessary to establish
flow average density (pmx) and flow average velocity
(Vrfl) as real functions defined in the D,; domain.

Dependent variables for both functions are defined on
Eq. (6) and (7), respectively.

a(ex t) _ Vs);laft (ex,t)

8
Vr)xgl (ex,t) ( )

A relative velocity coefficient was defined and
identified as a. It is presented on Eq. (8).
Some conditions were established, which served to
restrict the V*(e,x,) dependent variable. These
conditions are presented as below:

ov* (erx t)
— P/ =0
e )
e, =0
V¥ (Ley,e)=0 (10)
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jp (er,x,t )VX (er,x,t ) dAT
St

= Punx (Cxt ) Vim (e ) AT (11)

In Egs. (9) - (11) the conditions of: Condition of
maximum velocity in the tube axis, Non-slippery
condition in the tube internal wall and Mass
conservation condition, respectively, are presented.

oc(ex’t )(Seg —663 + 1)

Vi (ext) (12)
+10e? —10¢?

v* (er,x,t) =

A final expression for the velocity field
dependent variable was obtained by using Eq. (9) —
(11) to restrict V¥(ex,), and it is presented on Eq.

(12).

X v* (er,x,t )
rel (er,x,t):x— (13)
Vm (ex,t )
Finally, the expression for relative

dimensionless velocity profile (v?,) is shown on Eq.

(13).

For laminar isothermal Newtonian flows,
a(ex)=2 is employed, creating a known expression
for the velocity dimensionless profile equivalent to
VX (€rx)=2-2 ef . The RMS error (root mean square)
was employed in order to evaluate the predictability
of the relative dimensionless velocity profile

regarding research experimental data that might be
used (Devore, Berk, 2012).

m X b 2
Zi:l (Vexpi N Vmodi ) (14)

m

RMS =

The mathematical expression for RMS error,
applied in this study, is presented on Eq. (14). Where
m is the number of experimental data and Ve is the

experimental velocity or the experimental relative
dimensionless velocity provided by a certain radius.
The v , velocity is obtained by the proposed model

from Eq. (12) or Eq. (13). This depends on data
provided by studies used to validate the proposed
model. The experimental relative dimensionless
velocity was defined as the experimental velocity
divided by the average velocity. It is clear that Eq.
(12) needs to be used to validate the model, in case
experimental velocities are provided.

Thus, the dependent variable can be represented
as Vi(erx) by V(en Vi (ex): Vi, (€xd)- Due to

denotative simplicity reasons, the dependent variable
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was considered to be V¥(e, ) by Vi(e,, VX, v ). For

the case in which experimental velocities are
provided, a methodology was developed to allow
calculation of more suitable velocity values, v* and

X
Vshaft :

m
2
Fobi1 (Vr)r(lavs)flaﬁ ) = Z[Vc);pi -V (Vr);avs)ﬁaﬂ )J (15)
i1

The corresponding convex objective function
was established in Eq. (15). Thus, this objective
function has to satisfy the following conditions:

an'l(VX’V)l(‘l ft)

obj, m> Ysha o (16)
oV

OF, b'l(VX>V);1 ft)

obj,1 | Ym> Ysha _0 (17)

X
0 shaft

Once v* and Vi velocity values are obtained

for different experiments, values for relative velocity
coefficient can be calculated (o).

In case experimental relative dimensionless
velocities are provided, a similar method to the
previous one can be applied, changing the objective
function and the conditions of the first derivative.

m

Pz () = | Vi, — V& (a)T (18)

i=l

The corresponding convex objective function
was established in Eq. (18). Thus, this objective
function has to satisfy the following condition:

Tz () _, (19)
oa

A behavior for the relative velocity coefficient
can be established with these methods, for any
position and thermal condition in the tube wall under
study. An appropriate expression can be attributed to
the relative velocity coefficient by using a linear
regression model (Kleijnen, 2015).

RESULTS AND DISCUSSION

In order to validate the proposed fluid-dynamics
model, experimental data were employed from
Kwant (Kwant, 1971) and Kwant et al. (Kwant,
Fierens, Van Der Lee, 1973a), the working fluid
being glycerol in both studies. In addition, data
regarding relative dimensionless velocities obtained
through the numerical method proposed by Kwant et
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al. (1973b) were compared with experimental relative
dimensionless velocities. The of data regarding
experimental relative dimensionless velocities and
from the numerical solution were derived from
scaling velocity profile figures. Kwant et al. (1973a)
studied velocity profiles for Newtonian laminar flows
in a tube where wall temperature is constant, but
different in each experiment that is performed.
Experimental and numerical relative
dimensionless velocities are a function of x’, Q and
<Re> parameters, which are the dimensionless axial

position, iso-viscosity standard parameter regarding
the flow, and the Reynolds number evaluated at the
average flow temperature, respectively. For more
references regarding these parameters, the study by
Kwant et al. (1973a) can be revised. The current
study considered that the positional parameter (x')
does not create significant changes in the relative
dimensionless velocity profile. This assumption was
considered due to the fact that several velocity
profiles are not present for the same tube thermal
condition. In addition, the Reynolds number (<Re>)

was not selected as a thermodynamic parameter since
all flows that generate experimental and numerical
relative dimensionless velocity data are characterized
by a laminar regimen, and also have a Reynolds
number in the range of 0.24 to 55 (Kwant, 1971),
which was considered very low to produce significant
changes in the dimensionless velocity profile.

Due to previous assumptions, the Q
thermodynamic parameter was considered the most
influential in experiments conducted, since it
quantifies heat transference between the flow and the
tube, characterizing the heat transfer phenomenon on
heating or cooling processes. It is then possible to
establish that e=Q. The Q value is equivalent to zero
in case the flow and the tube have the same
temperature.

Vr)((:l (er’Q)
- a(Q)(sef —6e> +1)+10e§ ~10¢3 (20)

The proposed fluid-dynamic model to determine
relative dimensionless velocity profiles is presented
on Eq. (20). Figure 1 shows the dimensionless
velocity profile for the flow of a cooling process with
Q=-2.06 (Kwant, 1971). For this case, one a=3.053
was determined. The RMS error for data obtained
from the proposed method and the numerical method
was equivalent to 0.09080 and 0.07382, respectively.

Figure 2 shows a dimensionless velocity profile
for the flow of a heating process with Q=1.49
(Kwant, Fierens, Van Der Lee, 1973a). In this case,
one a=1.577 was determined. The RMS error for data
obtained from the proposed model and the numerical
method was equivalent to 0.02269 and 0.04002,
respectively.
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Figure 1. Dimensionless velocity profile for Q=-
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Figure 2. Dimensionless velocity profile for

16

1.4

12 |

V¥ (e,2.34)

06 F
04 |
02 |

o L

Figure 3. Dimensionless velocity profile for Q=2.34.
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Figure 3 shows the dimensionless velocity
profile for the flow of a heating process with Q=2.34
(Kwant, 1971). In this case, one 0=1.298 was
determined. The RMS error for data obtained from
the proposed model and the numerical method was
equivalent to 0.06887 and 0.07249, respectively.

With different calculated o values and Q values
used in previous experiments, a linear regression
model was developed with 0=2 for Q=0, in order to
calculate the relative velocity coefficient value (o).

(Q)=0.0432Q% —0.4034Q+2.0314  (21)

This linear regression model presented on Eq.
(21) have a determination coefficient of R?=0.9976.
Through the use of the linear regression model to
calculate the relative velocity coefficient (o) for
isothermal laminar Newtonian flows, a value of
0=2.0314 was obtained. Thus, this velocity
coefficient value is very close to the o=2 value,
which is calculated theoretically.

In order to validate the proposed fluid-dynamics
model for non-isothermal Newtonian flows, an
experimental dimensionless velocity profile was
evaluated for Q=-1.35 (Kwant, Fierens, Van Der Lee,
1973a). A good agreement was observed between the
dimensionless velocity profile (obtained from the
proposed  fluid-dynamics  model)  regarding
experimental data. This evaluation was presented on
Fig. 4.

3
ke -
4
2.5 r N
2 L
w L
m
o L
g5 T .
= [
> [
1 b
r * Experimental relative N
r dimensionless velocity
05 L + Relative dimensionless velocity
L by the numerical method
| —Relative dimensionless velocity
[ profile
0 I T I T S T T Y TS Y [N N
0 0.2 0.4 0.6 0.8 1

EI’

Figure 4. Dimensionless velocity profile for Q=-
1.35.

Through the use of Eq. (21), a value of 0=2.655
was calculated. The RMS error for data obtained
from the proposed model (using Eq. (21) to calculate
the relative velocity coefficient) was equivalent to
0.03169, and the RMS error from data obtained
through the numerical method was equivalent to
0.03817.

Engenharia Térmica (Thermal Engineering), Vol. 16 * No. 2 * December 2017 « p. 87-92 91



Ciéncia/Science

CONCLUSIONS

It can be concluded from the results that
dimensionless velocity profiles obtained for the
proposed fluid-dynamics model efficiently calculate
experimental dimensionless velocities for non-
isothermal Newtonian flows. Dimensionless velocity
profiles obtained through the use of the fluid-
dynamics model are better to model dimensionless
velocity profiles in cooling processes, in comparison
to dimensionless velocity profiles in heating
processes, for which heating is even higher in the
flow. Due to the flexibility to which the variables
might depend, or how the relative velocity coefficient
(a) can be defined, it is possible to employ the
proposed fluid-dynamics model in future studies to
obtain velocity profiles for non-Newtonian flows.
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