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ABSTRACT

In this work it is applied the Constructal Theory for the study of the
geometry of an “+”-shaped isothermal cavity inserted in a conductive solid
body. Main goal is to minimize the maximum temperature in the solid. The
total volume of the solid and the total volume of the cavity are kept fixed
while the dimensions of the cavity geometry vary according to constraints
and degrees of freedom defined by the Constructal Design. The solid body
has internal heat generation and its external surfaces are insulated. Cavity
walls are isothermal with constant temperature T,,. Obtained results
indicate that the optimal performance of “+”-shape cavity is 37.2% better
that the optimal performance of “C”-shape cavity and 10.8% better than the
“T”-shaped cavity for the same thermal conditions.

Keywords: isothermal cavity, PDETool, geometric optimization, heat
conduction

Constructal Theory states the fundamental idea
that everything that moves, whether animate or
inanimate, is a flow system. All flow systems
generate shape and structure over time in order to
facilitate this movement through a landscape full of
resistance (e.g. friction) (Bejan, 2000; Bejan and
Lorente, 2008; Bejan and Lorente, 2013 and Bejan
and Zane, 2012).

In the last years, engineering problems related
to the heat transfer area have received great attention.

volumetric rate of heat generation, W m™ Many of these problems focus on explaining how the

NOMENCLATURE

A area, m?

A,  cavity area, m?

H height, m

Ho  cavity region height, m
L length, m

Lo cavity region length, m
k thermal conductivity, W m™* K*
q heat current, W

q"

c,  specific heat, W kg K™
t time, s

T temperature, K

X,y spatial coordinates, m

Greek symbols

6 dimensionless temperature
p specific mass, kg-m-?
Subscripts

min  minimum

max maximum

Superscripts

dimensionless variables

INTRODUCTION

internal geometry of solid surfaces influences the
behavior of heat transfer. They seek, in addition to
understanding, to improve their performance and
search for new geometries, due to the importance for
various applications, such as heat exchanger, internal
combustion, electric motors and thermal conductors.

Several works show the great interest that many
researchers are giving to the Constructal Theory and
how it is being applied in problems of optimization of
the shape of flow systems that generate geometries
and structures. Works such as Biserni et al. (2007),
Gonzales et al. (2015), Link et al. (2013), Lorenzini
et al. (2014), Lorenzini et al. (2012), Lorenzini et al.
(2014), Lorenzini et al. (2011) and Lorenzini and
Rocha (2009) studied isothermal cavities with
different shapes intruded into solids with internal heat
generation aiming to increase heat transfer,
performance.

In this work, a cavity cooling problem of a
steady state heat conduction solid with internal heat
generation is solved with the finite element method.
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Geometry is 2D with constant physical properties
(density and conductivity). Constructal Theory and
Exhaustive Search are used to minimizes the
maximum temperature in the solid domain. The
cavity has a “+”-shaped form with constant area.
Main goal of current solution is to determine best
cavity geometry.

The Matlab PDETool is used to perform the
different simulations. This tool is a commercial
software based in the Finite Element Method (FEM)
for solution of partial differential equations and it is
used here to solve the heat diffusion equation for
achievement of thermal field in the solid domain. In
addition, it allows the construction of the
computational domain from basic forms (rectangles,
ellipses and polygons), generate and refine meshes
and define the boundary conditions, being a useful
platform to approach to this type of problem
(MATLAB, 2010).

MATHEMATICAL AND
MODELING

NUMERICAL

In this work it, is presented a steady-state
conduction heat transfer problem in which there is a
two-dimensional solid (plate) with constant thermal
conductivity (k) and uniform heat generation at a
volumetric rate (™). The solid has completely
isolated boundaries and the heat generated is
removed by the “+”-shaped cavity walls which are
maintained at a minimum temperature (Ti,). Fig. 1
(a) shows plate, cavity and boundary conditions.
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Figure 1. Problem and cavity description.
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Plate has height H and length L. The “+”-
shaped cavity can be defined as the composition of
the regions R,, R; and R, as shown in Fig. 1 (b),
where a region R, has height H, and length L, and
the regions R; and R, having equal dimensions being
H, the height and L; the length. According the
Constructal Theory, geometry optimization can be
subject to two constraints. The first being the total
area

A=H-L (1)

and the second corresponds to the area of the cavity
which is given by

Ac=Hy-Lo+2-H; Ly (2

The constraints imposed by Egs. (1) and (2) are
inserted into the formulation by defining a
dimensionless variable, @, such that

_A
b= ®3)

In addition, H, is defined as the lower formation
point of the regions R; and R,.

The maximum temperature that occurs in the
computational domain depends on the isothermal
cavity geometry. Main goal is to optimize cavity
geometry in order to minimize the dimensionless
thermal resistance. The analysis that allows
calculating the dimensionless thermal resistance as a
function of the geometry consists of numerically
solving the heat conduction equation given by

2 2
K204k 20 41=0 )
oy

OX

where the dimensionless variables are:

T-T,;
9= min (5)
q Alk
iny!E05~lyﬁO|ﬁ1!ﬁ2|ﬁ|E
XY, Lo Ly HoHy H,y HL
= 17 ©)
A

Dimensionless thermal resistance is defined by:

Tmax _Tmin

0 7
max qlll A/k ( )
The mesh will be constructed with non-uniform
triangular elements in two dimensions, having the
mesh for each geometric configuration between 900
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and 45000 elements. Mesh refinement is made and
validated until the criterion of grid independence is
satisfied. This criterion is defined by the equation:

(Hrilax - Hnjwzi )/ Hrilax < 1'1074 (8)

Table 1 shows an example of how grid
independence is calculated.

Table 1. Grid independence test (H/L=1, @=0.13,
Hy/L, = 14.26, H; /L; = 0.33, H, = 0.445).

Number of e, (8~ 6*hel
elements
754 0.0683 954x 1072
3016 0.0690 3.56x 103
12064 0.0694 1.41x 103
48256 0.0695 5.69x 107 *
193024 0.066
Conduction problem addressed needs the
following boundary conditions:
o Dirichlet boundary conditions - constant

surface temperature:
Tpmin = CONst 9)

o Neumann boundary conditions-constant
thermal flux on the surface (a particular case when
the surface is adiabatic or isolated as in the current
problem where " is considered equal to 0):

aT
—kZ—=qg" 10
o 9 (10)

Thus, by defining the external surface of the

domain as adiabatic, the boundary conditions are
given by the equations:

%=Oin X=-L/2or Xx=L/2and

oX (11)
0<y<H
a—f?:Om y=0and —L/2<X<-Ly/2o0r
oy (12)
Ly/2<X<L/2
00 _ .. - = ~ -~
a—~:O|n y=Hand -L/2<x<L/2 (13)
y
Now, being
L ~
xb=7°+L0
and
Yo =Hp+H;
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the boundary conditions for the cavity surface are
given by

X=—L,/20r X="L,/2and n
y<H,ory, <y<H

6=0in —x, <X <-Ly/20r Ly /2<X <X, )
and y=H, or y=vy,
6=0in X=—x, or X =x, and
~ ~_ @)
Hy<y<y,0ry=y
6=0in —L,/2<X<L,/2and y=H (4)

Function defined by Eq. (7) can be numerically
determined by solving Eq. (4) to the temperature field
in each assumed configuration. Then Opg IS
calculated in order to study its dependence on each
geometric configuration.

RESULTS

For the development of this work three degrees
of freedom were considered: dimensionless values
directly linked to the geometry evolution, and two
constraints defined by the Constructal Design theory.
The degrees of freedom considered for the "+"-
shaped cavity study and the definition of their
appearance are: Hy/Lgy, H;/L; and H,. The defined
constraints are the total area A and cavity area A.. In
addition, the dimensions of H,, Ly, H;, L; and H,
may vary, but will be restricted to maximum and
minimum values, in accordance with the degree of
freedom.

The search for the geometry that minimizes
resistance to heat flow follows three steps. In the first
one, geometry optimization is sought by varying the
relation Hy /L, and keeping fixed the other degrees of
freedom. In the second step, the relation H; /L, is
varied and the other parameters are kept fixed using
the new value of Hy/L,. In the third and last stage,
the influence of H, on the behavior of the
temperature inside the solid is studied. For this last
stage, the other degrees of freedom are kept fixed to
the values obtained in the previous steps. Initially,
behavior analysis of O are made for different
cavity configurations where @ = 0.13 and H/L =
1.0.

In the first step simulation, it is considered the
variation of ratio H,/L,, that defines the shape and
size of the region R, of the cavity and are kept fixed
H,/L, =0.33 (H, =0.1 and L; =0.3) and H, =
(Hy —H;)/2. Constraint tested for the variation of
the degrees of freedom are: 0.18<H, <1 and
0.07 < L; < 0.4. In Tab. 2, it is possible to see the
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values of O, for some values of Hy/L, evaluated
and the amount of grid elements that previously
satisfies the criterion of mesh independence.

Table 2. Optimization of Hy/L, (@ = 0.13, H/L =
1.0, Hl/Ll = 0.33 and Hz = (HO —H /2).

Ho/Lo Number of elements Omax
0.44 1416 0.2739
7.00 76288 0.1085
14.26 7488 0.066

Fig. 2 shows the behavior of the maximum
temperature for the different simulated configuration.
It is possible to observe that the increase of the ratio
H,/L, leads to a decrease of maximum temperature
in the domain.
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Figure 2. Effect of the ratio H, /L, over the
maximum temperature (0,y)-

In Fig. 3, the configurations and temperature
field for data presented in the Tab. 2 are shown.

For the tested configurations, H,/L, = 14.26
presented the lowest maximum temperature. In this

configuration H, = 0.999, L, = 0.07 and
Omax=0.066.

H /L =0.44

Bma’:O.ETSQ

H /L ,=14.26
6__=0.066

Figure 3. Geometric configurations of different
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values of H, /L, ratio (¢ = 0.13, H/L = 1.0,
Hl/Ll = 0.33 and HZ = (HO - Hl)/Z).

In the second stage, it is performed the variation
of the H,/L; degree of freedom which defines the
shape and size of regions R; and R, of the cavity,
simultaneously. For this case, the value for the
optimized H, /L, ratio in the previous stage was used.
Thus, the following parameters are fixed for the
simulations: Hy /L, = 14.26 and H, = (H, — H;)/2.
The restrictions for the variation of tested degrees of
freedom were: 0.065 < H < 0.998 and 0.03 <L <
0.464.

Simulation was performed for different ratios
between H; and L; and some results are presented in
Tab. 3.

Table 3. Results obtained for different values of the
ratios H; /L, (@ = 0.13, H/L = 1.0, Hy/L, = 14.26
and Hz = (HO - Hl)/Z).

H,;/L; Number of elements O max
0.14 6760 0.0611
0.75 49152 0.0747
33.2 21824 0.0877

In addition, temperature behavior is presented in
Fig. 4, allowing to observe that as lower is the ratio
H,/L; lower is the flux resistance. Thus, the
geometry which presented the best results can be seen
in Fig. 5, where H;/L, = 0.14 with H; = 0.065,
L; = 0.465 and 0,,=0.0611.

0.1
0.1
0.1

0.1

Bmax

0.1 0.3 0.8 3.0 33.2

H1/L1

Figure 4. Behavior of 8max for different values of
H,/Ly (» = 0.13, H/L = 1.0, Hy/L, = 14.26 and
H, = (Hp — H1)/2).

H /L =0.14

L H,/L,=0.75
6, =0.0611

6 _=0.0747
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H /L =332
8,_=0.0877

Figure 5. Some geometric configurations for
different values H, /L, (@ = 0.13, H/L = 1.0,
HO/LO = 14‘.26 and H2 = (HO - Hl)/Z).

Third stage consists in evaluating the geometry
considering the variation of the degree freedom H,.
For this case, it was kept fixed: Hy/L, = 14.26.
Third degree of freedom, H,, was made to vary from
0to0 0.93.

Results after having solved the heat diffusion
equation for different values of H, are shown in Tab.
4 and dimensionless thermal resistance variation is
plotted in Fig. 6.

Table 4. Results obtained for different values of H,
(HO/LO = 14.26 and Hl/Ll = 0.14’).

H, Number of element Omax
0.001 1416 0.0916
0.2 6764 0.0839
0.467 27040 0.0611
0.6 7328 0.0748
0.93 5096 0.0915

0.1
0.1
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@ 01
£
0]
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Figure 6. Behavior of 0, for different values of
H2 (HO/LO = 14‘.26 and Hl/Ll = 0.14‘).

Observing Table 4, it is clear that the
configuration which leads to minimal value of O, iS
obtained when H, is such that R; and R, as
positioned at the center of R, region, i.e., when H, is
close to (Hy,—H;)/2. Thermal resistance for
different values of @ are presented in Fig. 7
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AN

H.=0.2 H.=0.6
6, =0.0839 6, =0.0748

hr

H_=0.93
8 =0.0915

Figure 7. Some geometric configurations for
different values of H, (H, /L, = 14.26 and
Hl/Ll = 0.14‘).

Therefore, by applying results obtained in the
search for optimal cavity geometry for @ = 0.13,
geometries are constructed for different ratios
between the total and cavity areas. That is, the
geometries are constructed by maintaining the H, /L,
maximum value, H;/L; minimum value, and
H, = (H, — H;)/2. Results of the best geometries
for =0.1, @ = 0.2 and @ = 0.3 are shown in the
Fig. 8.

A%

@=0.1 @=0.2
., =0.0633 ,.=0.0565

Figure 8. Best geometric configurations for
®=0.1,¢=0.2and @ = 0.3 with H/L = 1.0.

Results of this work for the @ =0.1 and
optimized C-shaped, T-shaped, H-shaped and X-
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shaped cavities were compared in Tab. 5. Results
indicate that the performance of the optimum "+"-
shape cavity is 37.2% better than the C-shape cavity
and 10.8% better than of the T-shape cavity.

Table 5. Comparison of cavities (H/L = 1.0 and
9 =0.1).

Omax
C-shape cavity (Biserni, Rocha and Bejan, 0.1008
2004)
T-shape cavity (Lorenzini et al. 2014) 0.0710
H-shape cavity (Biserni et al. 2007) 0.0245
X-shape cavity (Link et al. 2013) 0.0395
“+”-shape cavity 0.0633

However, it has a performance of 61.3% lower
than that of the H-shape cavity and 37.6% lower than
that of the X-shape cavity.

CONCLUSIONS

In this work, a heat transfer problem was
addressed in which an isothermal "+"-shaped cavity
is located inside a conductive plate with heat
generation. During the study, simulations were
performed using the PDETool of Matlab software to
study different configurations of geometry cavity,
focusing on optimization, in order to minimize
resistance to heat flux.

Constructal Design assists in defining the
constraints and degrees of freedom of the problem
geometry. The plate is insulated and with internal and
a uniform heat generation. In addition, the total and
cavity areas are kept constant.

Simulations were performed by varying the
ratio between the geometry dimensions, optimizing
one degree of freedom in each step of the process,
being called "optimal™ those configurations that have
a lower resistance to heat flow. Results indicate that
when @ =0.1, the "+"-shape cavity has a
0max=0.0633, i.e, it is 37.2% better than the optimum
C-shape cavity and 10.8% better than the T-shape
cavity.

In addition, the use of the Constructal Theory
allows to better explain the geometric configuration
that offers a better thermal performance of the
system.
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