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ABSTRACT 
 
As a review framework, the present study describes the application and 
performance of different numerical schemes for Computational 
Aeroacoustics (CAA) of simple wave propagation problems. The current 
approach aims to simulate pulse propagation on the near field by the use of 
different spatial and temporal numerical schemes for the full and Linearized 
Euler Equations (LEE) in a dimensional and dimensionless formulation. 
Comparisons of processing time, residual error and quality of results are 
present and discussed shedding light to the relevant parameters which play 
important role in aeroacoustics. The investigation is focused on different 
Gaussian pulse propagation cases in unbounded and bounded domains 
which is solved by using optimized spatial and temporal schemes for 
reducing dissipative and dispersive errors. The numerical results are 
compared with the exact analytical solutions when available, showing good 
agreement. 
 
Keywords: wave propagation, numerical schemes, low dissipation, low 
dispersion, aeroacoustics 

 
NOMENCLATURE 
 
M Mach number 
DRP Dispersion-relating-preserving 
FDo Finite difference scheme 
D thickness, m 
J Bessel functions 
p dimensionless pressure 
u1,u2,u3 velocity components, m/s 
x,y,z cartesian coordinates, m 
 
Greek symbols 
 
ε pressure pulse amplitude 
θ angular coordinate inside domain 
ρ density, kg/m3 
∆t time-step 
 
Subscripts 
 
0 base flow 
x,y cartesian coordinates (direction) 
RMS root mean square 
∞ free stream 
 
INTRODUCTION 
 

The fundamental of noise generated by 
aerodynamic flow has been examined extensively by 
theoretical and experimental studies along the last 
century and more recently has evolved intensively in 
the computational field being originally called 
Computational Aero-Acoustics (CAA). In summary, 
the main physical idea behind CAA is the 

requirement of preserving the shape and frequency of 
wave generation and propagation. Numerically, this 
statement translates to the need of numerical schemes 
suited to handle multiple scales, including long and 
short waves and long-time integration with minimal 
dissipation and dispersion errors. 

With these restrictions imposed, classical 
Computational Fluid Dynamics (CFD) cannot 
guarantee a precise wave solution, since the codes are 
dispersive and dissipative, due to the low order 
numerical schemes employed for solving the 
governing equations. A way to overcome this 
problem is to construct spatial and temporal schemes 
optimizing the finite difference approximations in the 
wave number and frequency space. This approach 
will assure that the numerical solutions of a high 
order finite difference scheme will have the same 
number of wave’s modes (acoustic, entropy and 
vorticity waves). 

Table 1 presents a review of numerical schemes, 
proposed in the literature, applied exclusively to 
wave propagation problems. There are a lot of others 
schemes which follow the idea of optimization in the 
Fourier space (spectral resolution) – Lele (1992), 
Lockard et al. (1995), Haras and Ta’asan (1994) 
among others. These schemes are frequently used for 
shock noise prediction, scattering of acoustic pulses, 
subsonic flow past over obstacles and jets.  

The present paper is devoted to a review of 
numerical schemes applicable for the propagation of 
acoustic waves throughout a 2D (two-dimensional) 
computational domain. The main focus was given to 
the direct application of already known numerical 
techniques for such class of problem. In addition, 
numerical investigation and comparison of different 
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parameters intrinsically associated with the numerical 
implementation such as spatial (Tam and Webb, 
1993) and temporal discretizations 
Willianson (1980), Hu et al. (1996) and Colonius et 
al. (1993) have been addressed. Global parameters 
like processing time and level of reflection were also 
evaluated during the test cases. Finally, to accomplish 
the task of evacuating the acoustic pulses through the 
boundaries of the computational domain, a set of 
boundaries conditions also derived for acoustics were 
applied. The well-known Radiation and Outflow as 
well as Perfectly Matched Layer (PML) boundary 
conditions (Hu, 1996a) were implemented and tested. 
The propagation and evacuation of the acoustic pulse 
is finally validated against the analytical solution for 
Linearized Euler Equations (LEE). 

 
Table 1. Numerical schemes applied to wave 
propagation problems. 

Spatial Discretization References 

Dispersion-Relating-
Preserving (DRP) 

In this scheme a central difference is 
employed to approximate first derivatives. 
The coefficients are optimized based on a 
minimalisation of the dispersion error. 

Tam (1995), 
Tam (1997), 
Tam (2004) 

Finite Difference 
Optimized (FDo)  

Optimized scheme based on similar 
approach for space discretization. The 
difference is that the error is minimized 
taking into account logarithm of the 
wavenumber. The stability and accuracy 
increase for these schemes. 

Bogey and 
Bailly (2002), Zing 

et al. (1993) 

Temporal Discretization References 
RK3 This scheme is only optimized for criteria of 

low-storage. Previous use by the authors 
showed good properties.  

Berland et al.(2004) 

LDDRK5 Traditionally, the coefficients of the Runge-
Kutta scheme are optimized to minimize 
the dissipation and propagation waves. The 
optimization does not compromise the 
stability consideration. 

Stanescu and 
Habashi (1998), 

Berland et al.(2005), 
Colonius et 

al.(1993) 

RKO5 Optimized scheme based on similar 
approach for space discretization. The 
difference is that the error is minimized 
taking into account logarithm of the 
wavenumber. The stability and accuracy 
increase for these schemes. 

Roeck et al.(2004) 

Boundary Treatment References 
Buffer Zones Introduction of additional zones of grid 

points to surround the truncated domain so 
that the disturbances are attenuated. 

Colonius et al. 
(1993), Hu and 
Atkins(2002), 
Ta’asan and 
Nark(1995) 

Radiation and Outflow Based on asymptotic solution of Linearized 
Euler Equations. These approaches are very 
accurate as it looks for the direction of the 
direction of the wave that is reaching the 
boundaries of domain, and ensures that the 
wave absorption is perpendicular to the 
direction of wave propagation.  

Israeli and 
Orszag(1981), 
Giles(1990), 

Givoli(1991), Tam 
and Dong(1994), 

Bayliss and 
Turkel(1982) 

Perfectly Matched Layer 
(PML) 

Absorbing layer that was originally 
reflectionless for electromagnetic waves of 
any frequency and direction. Adapted to 
CAA. 

Hu(1996b), 
Hu(2001), Hu(2002) 

  
 

THEORY - GOVERNING EQUATIONS 
 

This section shows the equation set for the 
Linearized Euler Equations (LEE) in a dimensional 
and dimensionless formulation. Such set of equations 
has been suitable for wave propagation into a farfield 
– Tam and Webb (1993), Bogey and Bailly (2004) 
and Hu (1996a).  
 
A. The Linearized Euler Equation – Dimensional 

Formuale 
 

Acoustics wave propagation on a uniform mean 
flow is governed by Linearized Euler Equations 
(LEE) since for most of the aeroacoustics problems 
the Reynolds number based on wave length is high 
enough to make the viscous terms on Navier-Stokes 
negligible when compared with dynamic terms. The 

linearization of Euler equations is valid to predict 
wave propagation since acoustics waves involves 
small disturbances superimposed on a mean flow 
uniform by hypothesis. The use of Linearized Euler 
Equations is attractive because the relative small 
computational cost involved on simulations. Another 
advantage of this approach is its high capability on 
work with non-reflexive boundary conditions. 

This approach is useful for academics cases, 
but, for commercial software and industrial 
applications this approach is not so interesting due its 
small generality. An important limitation of 
Linearized Euler equation is that this formulation 
cannot predict correctly physical problems when 
there is coupling between flow dynamics and 
acoustic generation and/or propagation.  

The LEE for a 2D dimensional domain is 
presented as: 
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The no homogeneous term H on the right side of 
Eq. (1) represent the distributed aeroacoustics 
sources. In this work these equations have been 
solved by applying DRP-schemes and using non-
reflexive boundary treatment (see next section).  
 
B. The Linearized Euler Equation – Non 

dimensional Formuale 
 

The non-dimensional form of the Linearized 
Euler Equations is presented as: 
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where the density, velocities, pressure and Mach 
number are written on its straight forward form. In 
this approach it’s often assumed that the Mach 
number is always less than unity. This non-
dimensional formulation has been shown to introduce 
a specific technique for boundary condition 
treatment, which is presented in the next section. 

 
FORMULATION ON BOUNDARIES 

 
As stated by Tam and Webb (1993), in CAA 

numerical boundary conditions are often developed 
for idealized model problems. In practical 
applications, they must be modified or extended to 
account for the presence of a non-uniform and 
sometimes unknown mean flow. A reasonable 
boundary condition for CAA should be able to absorb 
all disturbances on a far-field without significant 
reflection of waves to inside of the computational 
domain. As a remark, this goal is very hard to be 
achieved by simple application of traditional CFD 
boundary conditions. Some interesting boundaries 
conditions are presented on literature. For Linearized 
Euler Equation the Perfectly Matched Layer of 
Hu (1996a) and the Radiation and Outflow Boundary 
condition of Tam and Webb (1993) seem to be the 
most powerful treatment on boundaries for 
aeroacoustics.  

Briefly, the formulation for radiation and 
outflow as well as PML boundary condition are given 
on next sub-sections. For detailed information consult 
references listed on Table 1. 

 
A. The Radiation Boundary Condition 

 
Essentially, Radiation boundary conditions were 

based on the farfield asymptotic solutions for the 
Linearized Euler Equations, as presented by 
investigators like Bayliss and Turkel (1982) and 
summarized in Tam and Webb (1993). These 
boundary conditions will apply at the boundaries 
where there are only outgoing acoustic waves. In 
Cartesian coordinates the equations are: 
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where 
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B. The Outflow Boundary Condition 

 
On a general form, at the outflow region the 

outgoing disturbances consist of a combination of 
acoustics, entropy and vorticity waves. To handle this 
more general and physical situation Tam and 
Webb (1993) presents the outflow boundary 
condition. In a Cartesian coordinates frame the 
equations are: 

  









∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

x
pu

t
p

ax
u

t 02
0

0
1ρρ

 (9) 

  

x
p

x
uu

t
u

∂
∂

−=
∂
∂

+
∂
∂

0
0

1
ρ  

(10) 

  

y
p

x
vu

t
v

∂
∂

−=
∂
∂

+
∂
∂

0
0

1
ρ  

(11) 

  

0
2

sincos
)(

1
=+

∂
∂

+
∂
∂

+
∂
∂

r
p

y
p

x
p

t
p

V
θθ

θ  
(12) 

  
The equations above apply at the boundaries 

where outgoing disturbances consist of a combination 
of acoustic, vorticity and entropy waves. 

 
C. The Perfectly Matched Layer (PML) 

 
Following Hu (2002) the PML equation for the 

2-D Euler equation is written in the form: 
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where q is an auxiliary variable defined as: 
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and xσ  and yσ  are the absorption coefficients often 
taken to be power functions, for example: 
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where xl or yl denotes the location where the PML 
zone starts, and D is the thickness of the PML 
domain. In this work values of mσ = 2 and β = 2 are 
used as standard for the computations. However, 
additional tests were performed changing the 
reference values of these parameters. 
 
NUMERICAL METHODS 
 

In order to check the validity and effectiveness 
of these schemes for wave propagation problems, 
three canonical pulse propagation examples will be 
reviewed. The numerical implementation was 
concentrated in the DRP 7-point, Tam and 
Webb (1993) and Tam (1995), respectively, and the 
9-point optimized central difference scheme of Bogey 
and Bailly (2004). For time integration two Runge-
Kutta schemes were selected based on independent 
criteria of low-storage Willianson (1980) and low-
dispersion/dissipation Hu et al. (1996). 

 
A. The Runge Kutta time integration method 

 
In this paper, the low-storage and low-

dispersion/dissipation properties are evaluated 
through the implementation of the following Runge-
Kutta schemes: 

• 3rd order low-storage Runge-Kutta scheme 
– Willianson (1980) – RK3W 

• 5 stages low-dissipation and low-dispersion 
2nd order Runge-Kutta scheme – Hu et 
al.(1996) – LLDRK5 

• 5 stages 2nd order optimized Runge-Kutta 
scheme – Bogey and Bailly (2004) – RKO5 

 
B. The finite difference schemes 

 
Tam and Webb in 1993 presented a complete 

methodology for treating Linearized Euler Equations. 
The spatial discretization is done by using the low-
dispersion and low-dissipation numerical schemes 
also known as DRP (Dispersion-relation-preserving). 
This scheme seems to be very suitable for the 
propagation of an acoustic pulse. The complete 
description of optimized spatial discretization for the 
Dispersion-Relation-Preserving (DRP) schemes is 
given in Tam and Webb (1993). 

The coefficients of the 7-point central difference 
scheme (DRP) for approximating spatial derivatives 
used in this work are: 

 
a0 = 0 

a1 = -a1 =  0.77088238051822552  
a2 = -a2 = -0.166705904414580469   
a3 = -a3 =  0.02084314277031176 
 
This scheme was applied to all internal points in 

the computational domain. However, due to the use 
of such a large stencil it gives rise to 3 ghost points at 
the boundary of the computational domain. 
PERFORMANCE OF METHODS 
 

In order to evaluate the solution accuracy for the 
simulations, the following residual error formulae has 
been employed: 
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where N is the number of points. 

The exact solution was obtained solving the 
following set of equations as presented in Tam and 
Webb (1993). 
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where 
1/22 2( )x Mt yη  = − +  , J0 and J1 are 

respectively, the Bessel functions of first kind and 
zero and first order. 

At the time t = 0 the initial condition is assumed 
to be u = v = 0 and p is a Gaussian distribution. To 
advance the solution in time, the simulations have 
been run using different CFL numbers varying from 
0.05, 0.1 and 0.5. These values were selected based 
on numerical stability criteria presented by the DRP 
scheme. The maximum ∆t for advancing the solution 
is given by the following criterion: 
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in which, applying the current values of M = 0.5, 

1x y∆ = ∆ =  and a0 = 1.0 results in maxt∆  = 0.119. 
 
TEST CASE – PULSE PROPAGATION 
 

Three different pulse propagation problems are 
investigated in this work. The first two problems are 
based on a set of Gaussian acoustic, entropy and 
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vorticity pulses applied on a Cartesian unbounded 2D 
domain:  
 
A. Gaussian acoustic, entropy and vorticity waves 

– CASE (A) 
 

A Gaussian Acoustic Pulse of form of 
Equation (21) has been applied. At the time t = 0 an 
acoustic pulse is generated at the center of the 
domain and then consecutively propagated through it 
until reaching the boundaries – Figure 1.  

Physically, this problem represents the 
propagation of an acoustic pulse in a medium at rest 
or subjected to free stream mean flow of Mach equal 
to 0.5. Based on that, two test conditions were 
analyzed based on the Mach number of the mean 
flow. In the case of mean flow an entropy pulse is 
released at the same time and at a distance of about 
1/3 of the length of the computational domain. This is 
done in order to force both perturbations to be at 
same time leaving the domain through the right 
boundary as they are propagated. The numerical 
results for such simulations were compared against 
each other and against the analytical solution for the 
LEE. 

 

 
Case (A) 

Presence of mean Flow (acoustic, entropy and vorticity waves); 
 

Figure 1. Illustration of wave propagation problems. 
 

The pressure, entropy and vorticity pulses were 
given by a Gaussian distribution:  
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The following parameters were applied: 
Pressure pulse amplitude ε1 = 0.01  
Half-width b = 3.0 
Entropy pulse amplitude ε2 = 0.001  
Half-width b = 5.0 
Vorticity pulse amplitude ε2 = 0.004  
Half-width b = 5.0 
 

In order to analyze the effect of reflection on 
boundaries an equal spaced, orthogonal mesh is 
adopted. The domain length is 100 100x− ≤ ≤  and 

100 100y− ≤ ≤ , and the domain has 201 x 201 
grid points. This leads to a mesh spacing 

1x y∆ = ∆ = . Such grid points have been applied to 
the three cases to be investigated in this work. To 
maintain numerical stability a Courant–Friedrichs–
Lewy (CFL) number of 0.1 is used to the present 
problem simulations. As the non-dimensional sound 
velocity is adopted as 1, on present problem, we can 
conclude that the time step is 0.1. 

 
B. Acoustic pulse through a mesh stretching – 

CASE (B) 
 
In order to investigate the grid-spacing 

influence in a wave propagation problem, this case 
has been arbitrary selected. This case is a variation of 
Case (A) where only an acoustic pulse (following the 
same parameters) is emitted and convected through a 
2D domain. At the position 50x ≥ +  the grid 
spacing is varied assuming different stretching rates 
of 5%, 10% and 50% - Figure 2. 

 

 
Case (B) 

Acoustic waves being transported in two different grid spacing; 
 

Figure 2. Illustration of wave propagation problems. 
 

C. Acoustic pulse inside a duct – CASE (C) 
 
In this case, it is considered the propagation of 

an acoustic pulse inside a duct in the presence of a 
mean flow of Mach number M = 0.5. The 
computational domain length is 100 100x− ≤ ≤  
and 50 50y− ≤ ≤ , where solid walls are located. A 
uniform grid of 1x y∆ = ∆ =  has been used. Two 
PML domains of width 10 x∆  are included at either 
end of the open duct – Figure 3. 
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Case (C) 

Acoustic waves being transported inside a duct. 
 

Figure 3. Illustration of wave propagation problems. 
 

RESULTS AND DISCUSSION 
 

In order to enhance the comprehension of the 
analysis performed in this work, the results will be 
separated in three sections according to the cases 
investigated.  

 
A. Numerical Results – CASE (A) 
 

Table 2 presents the performance results for the 
combination of the spatial and temporal schemes 
used in this work for solving the problem of 
Case (A). Observing the CPU time column, it’s 
possible to see that the combination of RK3 and 
DRP7 scheme has the best performance. This result 
was expected since the RK3 scheme has less storage 
requirements by iteration. Moreover, it is important 
to note that the residual error associated with this 
scheme has the same order of magnitude when 
compared to the other combinations. However, it is 
noticeable that the optimized finite difference scheme 
of Bogey and Bailly (2002) showed the best 
performance at all, with the residual error decaying 
almost 1 order of magnitude. Besides, the increase in 
the computational cost seems to be acceptable. This, 
all the combinations studied in this work could be 
completely applied for CAA simulations.  

 
Table 2. Performance of the numerical schemes – 
CASE (A) investigation. M=0.5, CFL = 0.1. 

DRP -Tam and Webb (1993) + Radiation & Outflow Boundary Conditions 

Runge-Kutta LDD-FD scheme CPU time (seconds) ERMS 

RK3 

DRP 7-points 

275.50 1.715 × 10-7 

LDDRK5  422.39 1.741 × 10-7 

RKO5  422.82 1.760 × 10-7 

FDo - Bogey and Bailly (2002) + Radiation & Outflow Boundary Conditions 

RK3  

STO 9-points 

281.52 1.015 × 10-7 

LDDRK5  435.93 9.641 × 10-8 

RKO5 435.23 9.394 × 10-8 

DRP - Tam and Webb (1993) + Perfectly Matched Layer Boundary Conditions 

LDDRK5 DRP 7-points 449.20 1.737 × 10-7 

 
 

 
It is important to note that the LDDRK5+DRP7 

combination for the PML method has a slightly 
higher computational cost when compared to the 
same combination when solving the outflow 
boundary conditions. It means, that the number of 

computations in the PML outer domain plays an 
important role in time consuming and that is cheaper 
to solve more equations in less points, as it is the case 
of the outflow boundary equations which are solved 
in 3 ghost’s points. 

Figure 4 shows the evolution of the residual 
error against the CFL number. As the CFL number 
goes to 0.5 (the maximum value used in this work) 
the error increases 1 order of magnitude, but it 
remains still within an acceptable range. During the 
analysis it was seen that the CFL can reach values up 
to 1.2 when using the PML technique.  

Qualitative results, through contour plots, for 
the acoustic, entropy and vorticity wave propagation 
are shown in Figures 5, 6, 7 and 8. For brevity, only 
the pressure and entropy pulses are shown in these 
figures. The parameters used were intensity relative 
to peak disturbance pressure and density ±0.005, 
±0.001, ±0.01, ±0.05. 

 
Error as a function of the CFL number
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Figure 4. Residual error vs CFL number – Case (A) 
problem. LDDRK5+DRP7 (outflow boundary 

condition applied). 
 

The pressure and density waveforms are also 
shown in these plots and compared with the exact 
solution – Equations (17), (18) and (19).  

 
OUTFLOW + RADIATION  

 
(a) Pressure Contour 
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(b) Pressure waveform 

 
Figure 5. Pressure contour and waveform – 

LDDRK5+DRP7, M=0.5, CFL = 0.1. 
 

The arrangement of releasing the pulses 
guarantees that the pressure and the entropy and 
vorticity waves are caught together at the same time 
in the right boundary of the domain – see Figure 5 
and Figure 6 (only density waveform). In this 
situation the outflow boundary condition and the 
PML should allow the waves to leave the domain 
without considerable reflections levels. The 
waveforms plots and the residual error encountered in 
all simulations confirm that low level of reflection 
was found (used to be less than 1% of the incident 
wave amplitude). Therefore, both outflow and PML 
are transparent to the wave’s propagation. An 
excellent agreement with the exact solution is seem in 
all combinations. 

In order to verify the influence of the number of 
points in the PML zone, the absorption coefficient 
σm and the exponent β in the power function (15), 
three additional simulations were performed, varying 
the respective parameters. These results have been 
compared with the reference simulation used to 
compose the data shown in Table  2 and Figures 7 
and 8 (only density waveform), which had 10 points 
in the PML zone and σm = 2. 

 

 
(a) Density waveform 

Figure 6. Density waveform – LDDRK5+DRP7, 
M=0.5, CFL = 0.1. 

 

 
(a) Pressure Contour 

 
(b) Pressure waveform 

 
Figure 7. Pressure contours and waveforms – 

LDDRK5+DRP7, M=0.5, CFL = 0.1. 
 

 
(a) Density waveform 

 
Figure 8. Density waveform – LDDRK5+DRP7, 

M=0.5, CFL = 0.1. 
 

In the first simulation σm was kept equal to 2 
and the number of points in the PML zone was 
reduced to 5. Figure 9(a) presents the comparison of 
the pressure waveform at 800 time-steps against the 
exact solution. 

 

 
(a) σm = 2, β = 2, N = 5 (ERMS = 7.292 × 10-7) 
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(b) σm = 1.5, β = 2, N = 10(ERMS = 1.733 × 10-7) 

 

 
(c) σm = 2, β = 1, N = 10 (ERMS = 1.729 × 10-7) 

 
Figure 9. Analysis of the influence of parameters in 

the PML power function absorption – Reference 
solution has a residual error ERMS = 1.737 × 10-7. 

 
Note that the residual error increased 4 times 

when compared with that one showed on Table 2. 
However the boundary treatment still remains as 
transparent to the wave propagation. Figure 9(b) 
shows the results assuming σm = 1.5 and keeping 10 
points in the PML zone. Again, no noticeable impact 
is seemed since the error remains close to the 
reference simulation. The whole pattern of the 
solution is pretty the same as the reference solution. 
Finally, a more severe change was made with the 
exponent β, changing it to unity. By assuming that, it 
means that the absorption power function is now 
linear. The results are shown in Figure 9(c). It was 
interesting to observe that the final result reached the 
same order of residual error as presented by the 
reference solution. This quick analysis leads to the 
conclusion that the number of points in the PML zone 
is the most important parameter to deal in the 
absorption function. 

 
B. Numerical Results – CASE (B) 

 
The optimized schemes presented in this paper 

were originally based on a uniformly spaced grid. 
However, when there is stretching associated to the 
mesh significant discretization errors may occur, 
which may jeopardize the dispersion and dissipation 
properties inherent to these schemes. In order to 
verify the impact of non-uniform computational grid 
3 different stretch rates were applied (5%, 10% and 
50%). An acoustic pulse is propagated from an 

uniform mesh (region 1) to a new mesh (region 2) 
where it is applied the stretching. The interface 
between the two mesh resolutions is placed at 

/x x∆  = 50. 
Figure 11 clearly shows the acoustic pulse close 

to the border of the computational domain. As the 
stretching rate is increased the acoustic pulse is 
distorted due to the spatial resolution. Consequently 
the wave front moves ahead, leading to a dispersion 
error, which in this simple case is relevant when 
compared to the exact solution – see Figure 10. Based 
on this simple analysis and in a literature review the 
recommended stretching rates cannot be more than 
5%. 

CASE (B) – Effect of a non-uniform grid in the dispersion and 
dissipation properties. 

 
 

Figure 10. Effect of grid stretching over the acoustic 
pulse propagation – LDDRK5+DRP7, M=0.5, 

CFL = 0.1. The interface between the two mesh 
resolutions is marked with double-line. 

 

 
 

Figure 11 – Effect of grid stretching over the acoustic 
pulse propagation – LDDRK5+DRP7, M=0.5, 

CFL = 0.1. Pressure contours. 
 

C. Numerical Results – CASE (C) 
 
The last case studied was the propagation of an 

acoustic pulse inside a duct in the presence of a mean 
flow of Mach number M = 0.5. Despite there is no 
available an analytical solution for this problem, the 



Ciência/Science Almeida. Review of Numerical Schemes and Boundary… 
 

Engenharia Térmica (Thermal Engineering), Vol. 15 • No. 1 • June 2016 • p. 77-87 85 
 

effectiveness of the boundary treatment could be 
extensively tested due to the strong incidence of 
waves that are leaving the domain and those ones that 
are being reflected by the wall and shall leave the 
domain as it is advected. The numerical scheme used 
was the LDDRK5+DRP7 keeping the CFL equal to 
0.1, for both set of radiation and PML boundary 
conditions. Figure 12 shows the pressure contours 
evolution inside the duct with time steps ranging 
from 200 up to 1400 varying in steps of 200. As the 
acoustic wave is advected inside the duct, it is 
reflected by the duct walls. Both set of boundary 
conditions (radiation and PML) could deal with the 
physical reflection of these waves. However, a close 
look on Figure 12 reveals that the PML treatment 
absorbs more the wave pattern’s evolution. The 
pressure history was acquired in a point over the left 
border with coordinates of (-97; 0) in order to 
confirm such fact. This data will not be showed here 
due to space limitations. The absence of an analytical 
solution does not permit to affirm which situation is 
closer to the actual physical of the problem. 
However, the “wiggles” seem in the borders of the 
radiation condition seems to be a signal that the 
solution is being contaminated by spurious 
reflections. 

 
CASE (C) 

 
(a) M=0.5, time step = 200 (PML) 

 

 
(a) M=0.5, time step = 200 (RADIATION) 

 

 
(b) M=0.5, time step = 800 (PML) 

 

 
(b) M=0.5, time step = 800 (RADIATION) 

 

 
(c) M=0.5, time step = 1000 (PML) 

 

 
(c) M=0.5, time step = 1000 (RADIATION) 

 
(d) M=0.5, time step = 1200 (PML) 

 

 
(d) M=0.5, time step = 1200 (RADIATION) 

 

 
(e) M=0.5, time step = 1400 (PML) 
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(e) M=0.5, time step = 1400 (RADIATION) 

 
Figure 12. Wave propagation inside a duct. 
Comparison of PML vs Radiation boundary 

treatment. 
 

CONCLUSIONS 
 

In this work a review about the performance of 
numerical schemes and boundary conditions for wave 
propagation problems was performed. Different 
spatial discretization as DRP and FDo as well as 
temporal Runge-Kutta schemes has been 
implemented in order to propagate pressure, entropy 
and vorticity disturbances throughout a 2D (two-
dimensional) domain. At the boundaries, radiation, 
outflow and perfectly matched layer equations were 
used to evacuate the pulses under the effect of a mean 
flow. With the numerical results presented herein, it 
was possible to identify which combination of the 
schemes studied better apply for solving such kind of 
wave propagation. For all simulations performed in 
the presence of a mean flow, the numerical schemes 
were stable and provided good results. Based on the 
results the recommended combinations are 
LDDRK5+DRP7 and RKO5+STO9, considering a 
trade between performance and accuracy. The 
boundary conditions tested were efficient in 
evacuating the pressure and entropy pulse 
perturbation with no noticeable reflections and 
instabilities in the computed waveforms.  
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