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ABSTRACT 
 
The problem study here is concerned with the geometrical evaluation of an 
isothermal Y-shaped cavity intruded into conducting solid wall with internal 
heat generation. The cavity acts as a sink of the heat generated into the 
solid. The main purpose here is to minimize the maximal excess of 
temperature (θmax) in the solid. Constructal Design, which is based on the 
objective and constraints principle, is employed to evaluate the geometries 
of Y-shaped cavity. Meanwhile, Simulated Annealing (SA) algorithm is 
employed as optimization method to seek for the best shapes. To validate 
the SA methodology, the results obtained with SA are compared with those 
achieved with Genetic Algorithm (GA) and Exaustive Search (ES) in recent 
studies of literature. The comparison between the optimization methods 
(SA, GA and ES) showed that Simulated Annealing is highly effective in 
the search for the optimal shapes of the studied case. 
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NOMENCLATURE 
 
A area, m² 
H height, m 
k body thermal conductivity, W m-1 K-1 
L length, m 
L0 elemental length, m 
L1 stem length, m 
q heat current, W 
t  thickness, m 
t0 elemental thickness, m 
t1 stem thickness, m 
T  temperature, K 
W width, m 
x,y cartesian coordinates, m 
 
Greek symbols 
 
 angle formed by the tributary branch of the Y-

shaped cavity and horizontal axis, rad 
θ dimensionless temperature, eq. (7) 
 area fraction 
ψ   auxiliary area fraction 
 

 
Subscripts 
 
aux auxiliary 
c cavity 
m once minimized 
mm  twice minimized 
mmm three times minimized 
mmmm fourth times minimized 
o optimal 
oo twice optimized 
ooo three times optimized 
oooo fourth times optimized 
0 tributary branches  
1 stem 
 
Superscripts 
(˜) dimensionless variables, eq. (8) 
 
INTRODUCTION 
 

With the technological advancement of the 
industry and the miniaturization of the systems and 
electronics circuits, new needs and constraints 
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emerged in heat transfer problems. The traditional 
methods for cooling of electronic devices do not 
comply with the actual scales required for their 
working. According to Bejan (2003), the viable 
solution is the utilization of cooling ducts, cavities or 
high conductive pathways intruded in the medium 
with heat generation. The problem studied here is 
concerned with a solid wall with internal uniform 
heat generation which can be cooled solely by means 
of the isothermal Y-shaped cavity intruded into the 
wall. The present research employed Constructal 
Design method to guide the evaluation of geometrical 
shape of the cavity which minimizes the maximal 
excess of temperature (θmax) (Bejan, 2000; Bejan and 
Lorente, 2008). The search for the optimal 
geometries is performed with the combinatorial 
optimization algorithm Simulated Annealing (SA) 
(Kirkpatrick et al.,1983; Eglese, 1990). 

Constructal Theory is the view that geometry 
patterns of flux systems in nature emerged by a 
physical principle, i.e., shape and structure generated 
in animate and inanimate systems are deterministic 
and not the result of random. Constructal Theory, 
proposed by Adrian Bejan (1996), states that 
geometry in any flux systems follows the Constructal 
Law, which states that “For a finite-size flow system 
to persist in time (to live), its configuration must 
evolve in such a way that provides easier access to 
the currents that flow through it”. The form to 
employ Constructal Law for geometric evaluation of 
flux systems is the Constructal Design (Bejan, 2000), 
which is a method based on objectives and 
restrictions used to minimize the imperfections of the 
investigated systems. Recently, several C, T, Y-
shaped cavities, as well as, complex and multiple 
cavities has been studied by means of Constructal 
Design, see Refs. (Biserni et al.,2004; Xie et 
al.,2010a; Lorenzini et al., 2011; Estrada et al.,2012; 
Lorenzini et al.,2012; Lorenzini et al. 2013; 11. 
Hajmohammadi et al.,2013; Lorenzini et al., 2014a; 
Lorenzini et al., 2014b). 

In the study of Biserni et al. (2004) the 
geometry of C and T-shaped cavities intruded into a 
rectangular solid with internal heat generation was 
optimized. The T-shaped cavity has a higher 
performance than C-shaped one, i. e., the most 
complex cavity with a higher penetration in the solid 
domain had the best efficiency. In the work of Xie et 
al. (2010) it was applied Constructal Design to 
geometric optimization of a T-shaped cavity intruded 
into a trapezoidal solid domain with uniform heat 
generation. As performed in the previous study of 
Biserni et al. (2004) the external surfaces of solid 
domain are considered adiabatic. In the work of 
Lorenzini et al. (2009) a complex T-Y-shaped cavity 
has been optimized and authors concluded that the 
complex cavity led to a thermal performance 108 % 
superior than that reached with a C-shaped 
configuration, for the same conditions and 
dimensions of the problem. Furthermore, in the 

researches of Lorenzini et al. (2011), the geometric 
optimization of a Y-shaped cavity demonstrated that 
this geometry has a performance nearly 109 % higher 
than that predicted with the elemental cavity. 

The above mentioned studies allowed the 
observation that most complex geometries tend to 
conduct the flux system to the highest efficiencies. 
For the cavity problems, systems which minimizes 
the maximal excess of temperature. However, as 
more complex are the cavities more degrees of 
freedom they have and higher computational effort is 
required to solve the problem for all geometric 
possibilities and, consequently, find the optimal 
geometry. Recently studies (Lorenzini et al., 2014a; 
Lorenzini et al., 2014b), employed search algorithms 
to seek for the best shapes in alternative at 
conventional method of Exhaustive Search (ES), 
widely used in previous studies of cavities. In both 
studies it was applied Genetic Algorithm (GA) for the 
geometric optimization of Y-shaped cavity intruded 
into a solid with constant heat generation. In the work 
of Lorenzini et al. (2014a) performed a comparison 
between GA and ES for optimization of isothermal 
cavities, while in Lorenzini et al. (2014b) it was 
evaluated the effect of convective transfer in the 
cavity surfaces. Moreover, new recommendations for 
the best geometries are proposed for several ratios of 
H/L (ratio between height and length of solid 
domain) solely with the employment of GA. In both 
studies it was noted that the number of simulations 
required with GA are strongly reduced in comparison 
with that needed with ES. 

The present work has the purpose to evaluate 
the combined use of combinatorial optimization 
algorithm Simulated Annealing (SA) together with 
Constructal Design to evaluate the Y-shaped cavity 
geometry. The physical problem investigated here is 
the same previously studied in Lorenzini et al. (2011) 
and Lorenzini et al. (2014a). In this sense, results 
emerged by application of SA is compared with those 
found in literature with GA and SA.  
 
MATHEMATICAL MODEL 
 

Figure 1 shows the computational domain of the 
studied problem. The Y-shaped cavity acts removing 
the heat generated by solid domain. The seek for the 
optimal geometry of the cavity is given by variation 
of the degrees of freedom: H/L, t1/t0, L1/L0 and α. The 
Finite Element Method (FEM) is used to determine 
the temperature field inside the solid domain and the 
maximum temperature is collected. The best thermal 
performance of the system is obtained when the 
maximum temperature inside the solid domain is 
minimized. 

The solid domain, gray region in Fig. 1, has a 
constant conductivity k. Moreover, the solid 
generates heat at a constant volumetric rate given by 
q''' (W·m-³). The outer surfaces of the solid are 
adiabatic, i.e., perfectly insulated. The generated heat 
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current (q'''·A) is removed by the Y-shaped wall, 
which is maintained at a minimal temperature (Tmin). 
The minimal temperature in the cavity represents a 
large heat transfer coefficient in such way that 
convective resistance can be neglected in comparison 
with the solid conduction resistance. This hypothesis 
can be associated with a large class of examples 
where augmentation and compactness are required, 
such as in the cooling packages of small-scale 
electronics (Lorenzini et al. 2000; Xie et al.,2010b).  

 

 
 

Figure 1. Computational Domain of  Y-shaped cavity 
into a solid with internal heat generation. 

 
The main goal here is find the optimal 

geometric form (H/L, t1/t0, L1/L0,α) which minimizes 
the maximum excess of temperature (θmax – 
θmin)/(q'''A). According to Constructal Design 
method, this optimization must respect three 
constraints, total area of the solid, cavity area and 
auxiliary area, which are given respectively by: 

  
HL=A  (1) 
  

ααtαtt+tL+tL=Ac cossincos2 2
0010011   (2) 

  
  10001 cos2cossin t+αLαt+αL+L=Aaux  (3) 

  
where the third and four terms of Eq. (2) represents 
the trapezoidal area that unify the simple and 
bifurcated branches of the Y-shaped cavity. In Eq. 
(3), the second and first terms between parentheses 
on right side of the equation represents the height and 
the width occupied by the cavity. The Eqs. (2) - (3) 
can be expressed as the cavity and auxiliary fractions 
in relation to total area. They are given by: 

  
AA= c /  (4) 

  
AA=ψ aux /  (5) 

  
It is worthy to mention that the Eq. (2) is valid 

only for following interval: 0 < α < π/2 rad. 

The analysis that delivers the global thermal 
resistance as a function of the geometry consists of 
solving numerically the heat conduction equation 
along the solid region. 

  

01~~ 2

2

2

2
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
  (6) 

  
In the dimensionless process of the heat 

diffusion equation, the term q’’’/k is evidenced in all 
terms, given rise to the unity in the third term of Eq. 
(6). 

The dimensionless variables can be written by: 
  

k
Aq

θθ
=θ

'''

minmax   (7) 

  

2/1
0

1010
~~~~~~~~

A
LH,,L,Lt,ty,x,=L,H,L,L,t,t,y,x 110  (8) 

  
As previously mentioned the outer surfaces of 

the solid are thermally insulated (adiabatic) while the 
cavity surfaces are maintained at minimal 
temperature θmin. For the sake of brevity, the 
equations which represents the boundary conditions 
will not be addressed in this text. More details can be 
seen in the study of Biserni et al.(2004). 

The dimensionless form of the Eqs. (1) - (3) are 
given, respectively, by: 

  
LH= ~~1  (9) 

  
ααtαtt+tL+tL= cossin~cos~~~~2~~ 2

0010011   (10) 
  

  10001
~cos~2cos~sin~~ t+αLαt+αL+L=ψ  (11) 

  
The objective is minimizes the maximum excess 

of temperature θmax in the solid domain, given by 
dimensionless equation: 

  

k
Aq
TT=θ '''

minmax
max

  (12) 

  
NUMERICAL  MODEL 
 

The function represented by Eq. (12) is 
determined numerically by solving Eq. (6)  for the 
temperature field in every assumed configurations 
(H/L, t1/t0, L1/L0,α) and calculating θmax to see whether 
θmax can be minimized by varying the configuration. 
The numerical solution is performed with the Finite 
Element Method (FEM) (Reddy and Gartling, 1994), 
based on linear triangular elements, developed in the 
MATLAB environment, precisely the PDE (partial-
differential-equations) toolbox (MATLAB, 200). The 
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grid was non-uniform in both x and y directions, and 
varied from one geometry to the next. The 
appropriate mesh size was determined by successive 
refinements (h-adaptively), increasing the number of 
elements four times from the current mesh size to the 
next mesh size, until the following criterion is 
satisfied:  

  
4

max
1

maxmax 101|~/)~~(|   iii   (13) 
  

where θi represents the maximum value of the 
temperature evaluated with current mesh, θi+1 
represents the temperature evaluated with next 
refined mesh (which has four elements more than the 
previous mesh). 

Table 1 illustrates the refinement mesh process 
with the aim to find a independent mesh, that does 
not  influence final results of the temperature field. 
The following results were performed by using a 
range between 2240 and 143360 triangular elements. 
The independent mesh is achieved for the third 
refinement (35840 elements). The grid independence 
test is performed for a fixed geometry with the 
following parameters:  =  0.05, ψ = 0.5, H/L = 1.0,  
t1/t0 = 2.0, L1/L0 = 0.5, α = 0.94. 

 
Table 1. Grid independence test. 
N. Elements  θmax |(θi

max- θi+1
max)/ θi

max| 

2240 0.079046 5.6600×10-4 

8960 0.079001 1.8978×10-4 

35840 * 0.078986 5.6971×10-5 

143360 0.078982 ------------- 

* Independent mesh 
 
The results obtained in grid independence test 

were compared to previous results found in the 
studies of Lorenzini et al. (2011) and Lorenzini et al. 
(2014a). The comparison is depicted in Tab. 2. 

 
Table 2. Comparison between the results achieved 
with the present model and those showed in 
literature. 

Reference θmax 

Present Work 0.0762 

Lorenzini et. al. (2014a) 0.0762 

Lorenzini et. al. (2011) 0.0762 

 
USING SIMULATED ANNEALING TO 
GEOMETRIC OPTIMIZATION 

 
The combinatorial optimization algorithm 

Simulated Annealing (SA) was proposed firstly in the 

study of Kirkpatrick et al. (1983) and it has a 
heuristic based in production of resistant materials, 
like glass or metal, submitted to annealing process. 
Initially the material is heated at high level 
temperatures and then cooled slowly to obtain the 
minimization of energy between the atoms of the 
material. The algorithm of Kirkpatrick et al. (1983) 
apply the optimization proposed by Metropolis et al. 
(1953) for various temperature levels.  

Based on the heuristic presented, the algorithm 
SA starts the seek for the possible solutions in the 
search space and accept news solutions according 
with a probability given by Eq. (14), which depends 
on current iteration temperature of algorithm. The 
function which decreases the temperature at each 
iteration of the SA is named cooling schedule. For 
high algorithm temperatures of the annealing process 
the algorithm proposes distant new geometric 
neighbor point and has more probability to accept bad 
solutions, i.e., distant from the optimal shape. As the 
algorithm temperature decreases the new proposed 
neighbor points are near from the current point and 
the probability to accept bad solutions decreases 
considerably. 

  

 






Tmax

Δ+
=P

exp1

1  
(14) 

  
In Equation (14) ∆ is the difference between the 

value returned by Objective Function of the new 
configuration in relation to Objective Function value 
for the best evaluated point. More precisely, when a 
new geometry neighbor is proposed in comparison 
with the current solution, the value of Objective 
Function, which it is intended to be minimized, is 
calculated for this new geometry (neighbor). 
Afterwards, it is calculated Δ subtracting the value of 
Objective Function for the neighbor solution and 
Objective Function for the current solution. The 
acceptance probability of solution also depends on 
the actual algorithm iteration. Once the numerical 
model used here led to an achievement of different 
temperatures for each degree of freedom, for 
calculation with Eq. (14) it is used the highest 
temperature of domain (MATLAB, 2000).  

To apply the SA algorithm in the geometric 
optimization of the Y-shaped cavity, it was needed 
the same discretization of the space search realized in 
the study of Lorenzini et al. (2014a). The 
implementation of SA was run by MATLAB 
environment. More precisely, it is used the Global 
Optimization Toolbox with a specific function to SA 
execution named simulannealbnd. The SA solver of 
the MATLAB is extremely adaptable, i.e., it is 
possible to develop new algorithms for several 
functions as cooling schedule, annealing function or 
the acceptance function. 

The present work applied the SA algorithm for 
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the same problem previously studied in Estrada et al. 
(2012) and Lorenzini et al. (2014a) where the 
Exaustive Search (ES) and Genetic Algorithm (GA) 
were employed to seek for the optimal shapes. In 
these works all degrees of freedom (H/L, t1/t0, L1/L0,α) 
were evaluated. In the present work, the main 
intention was to evaluate the possibility to employ 
SA combined with Constructal Design for geometric 
optimization of complex cavity shapes. In this sense, 
the degree of freedom H/L will be kept fixed (H/L = 
1.0) and the optimal shapes are obtained for various 
fixed values of t1/t0, finding the two times minimized 
maximal excess of temperature, (θmax)mm and the its 
corresponding optimal shapes: (L1/L0)o and αoo. 

The search space formed by degrees of freedom 
(DOF) L1/L0 and α was discretized in the same 
solution space employed for GA algorithm used in 
Ref. [12]. The SA was evaluated for 15 different 
values of DOF L1/L0, as can be seen in the matrix 
represented in Eq. (15), while the DOF α is varied in 
the interval 1.00 ≤ α ≤ 1.57 with a step of Δα = 0.01.  

 















10.70.50.30.1

0.070.050.030.020.01

0.0070.0050.0030.0020.001/ 01 =LL

(15)

 

 
In order to apply the SA algorithm in an 

appropriate search space, it is needed to develop an 
annealing function, i.e., the function which proposes 
neighbor solutions from the current point during the 
optimization process. The proposal of the new 
neighbor for the possible values of L1/L0 must respect 
the interval depicted in Eq. (15), and the new points 
for α can not extrapolate the interval described above 
with a precision of Δα = 0.01. A new cooling 
schedule (the way as the control temperature for SA 
algorithm in each iteration will be minimized) is 
proposed here and is named hybrid function. This 
function consists in a mixture between two functions 
available in MATLAB Optimization Toolbox: 
Exponential and Boltz. The SA algorithm used here 
has three available cooling functions: Exponential 
(default model), Fast and Boltz. These functions are 
presented by the following equations: 

  

0 0.95ksa
iT = T   (16) 

  

sa
i k

T=T 0  (17) 

  

 sa
i k

T=T
ln

0  (18) 

  
where ksa is the annealing parameter, which is the 
same value for iteration number before reannealing,  
i.e., the number of iteration before the recalculation 
of temperature. By default, it is taking into account a 
value of ksa = 100. Ti represents the temperature in 

the current iteration and T0 represents the initial 
temperature of the algorithm, that is assumed T0 = 
100 by default. In this work the proposed cooling 
temperature, named Boltzexp, is a hybrid form 
between the models described in Eq. (16) and Eq. 
(18). Basically, the function consists on the 
evaluation of the temperature obtained with the two 
equations and the employment of the lowest 
temperature obtained with both methods in the 
current iteration. Figs. 2 - 3 illustrate a comparative 
between the cooling models, including the hybrid 
model proposed in the present study. 

 

 
 

Figure 2. The behavior of algorithm temperature as a 
function of the number of iterations for the Fast 

cooling schedule of SA. 
 

 
 

Figure 3. The behavior of temperature as a function 
of the number of iterations for three different cooling 

schedules of SA (boltz, exponential and hybrid). 
 

It was performed sixty executions of SA 
algorithm for the four different cooling schedules. 
The execution of SA for each kind of cooling 
schedule led to distinct performances, which will be 
analyzed in next section. The algorithm stops when 
the maximal excess of temperature is θmax = 0.6119, 
which is the same criterion employed in the work of 
Lorenzini et al. (2014a) for stop of GA. The 
maximum number of 150 iterations without changes 
in the current optimal shape was also used as stop 
criterion for execution of SA. In spite of the 
establishment of this last criterion, all SA executions 
found the same optimal value predicted in the 
research of Lorenzini et al. (2014a) for the case with 
H/L = 1.0 and t1/t0 = 11.0.  
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RESULTS AND DISCUSSION 
 

Table 3 demonstrates a comparison between the 
SA executions for the four kinds of cooling schedules 
for algorithm temperature. It is important to mention 
that the results of Table 3 were based in sixty 
executions of SA algorithm for each cooling schedule 
(Fast, Boltz, Exponential and Boltzexp). Once the SA 
algorithm is probabilistic and it has functions for 
generation of random numbers, it is noticed that the 
number of iterations (required simulations to find the 
optimal values) is not constant. In this sense, it is also 
presented in Table 3 the mean required number of 
iterations for achievement of optimal shapes, as well 
as, the lowest and highest number of simulations 
required for achievement of the optimal shape. It is 
also shown the number of times where the algorithm 
reaches to the optimal shape. 

 
Table 3. Comparative between SA cooling models for 
temperature algorithms. 

Cooling 
Schedule (SA) % Mean 

Iter. 
Min. 
Iter 

Max. 
Iter. 

Fast 50 129.28 4 187 

Boltz 72 206.63 6 422 

Exp 80 100.90 18 248 

Boltzexp 
(hybrid) 90 154.58 49 381 

 
Firstly, Table 3 shows that all models reached to 

the same global optimal shape. The fourth column of 
Table 3 shows that on the one hand the model 
Boltzexp is the most reliable model for achievement 
of the optimal geometry since it reached 54 times (of 
60 executions) to the global minimal maximum 
excess of temperature for the Y-shaped cavity, i.e., 90 
% of executions. The other 6 executions led to local 
minimal temperatures and local optimal shapes. On 
the other hand, the Fast model reached the optimal 
shape only 50 % of times executed, being the lowest 
reliability model among the studied functions. 
Concerning the number of iterations, it can be seen 
that the algorithm can reach optimal geometries (even 
a local optimal shapes) with few iterations 
(simulations), e.g., the Fast model reached to the 
minimal shape with only 4 iterations, while the model 
Boltzexp required a minimal of 49 iterations to find 
one optimal shape. The mean number of iterations to 
find the optimal shapes among the 60 executions 
performed for all cooling schedules are presented in 
sixth column of Tab. 3. The best model in this aspect 
is the Exp, which required approximately 100 
iterations to find the optimal shape. In spite of the 
fact that Exp model required a number of simulations 
nearly 35 % lower than that required for the Boltzexp 
model, this last model will be employed in the 
continuity of the work due to its elevated reliability, 
which is the most important aspect in the seek for the 

optimal shapes. 
Table 4 presents a comparison between the 

results reached with Boltzexp cooling schedule in SA 
algorithm and those reached with ES (Lorenzini et 
al., 2011) and GA (Lorenzini et al., 2014a). The 
optimized geometry was performed for the following 
constant values of constraints and degrees of 
freedom:  = 0.05, ψ = 0.3, H/L = 1.0 and t1/t0  = 
11.0. The mode of number of iterations for 
achievement of the optimal results with SA are used 
for comparison with the results of literature, i.e., the 
number of iterations with more occurrence. 

 
Table 4. Comparative between obtained results with 
ES, GA and SA for the following fixed parameters. 
Optimization 

Method (L1/L0)o (α)oo (θmax)mm Iter. 

Exhaustive 
Search 0,007 1,55 0,611 331 

Genetic 
Algorithm 0,007 1,55 0,611 169 

Simulated 
Annealing 0,007 1,55 0,611 143* 

* Mode of the number of iterations in 60 SA 
executions with hybrid cooling model  

 
The results of Table 4 shows that the twice 

minimized maximum excess of temperature, (θmax)mm, 
was the same for all search mechanism. Furthermore, 
all methods employed  found the same optimal 
geometries: (L1/L0)o and (α)oo. Concerning the 
number of simulations (iterations) to optimize the 
problem it can be observed that the search 
mechanisms heuristic and probabilistic (GA and SA) 
require a number of simulations strongly inferior to 
that needed with ES, allowing future studies of more 
complex geometries with larger number of degrees of 
freedom. For this specific problem, the number of 
simulations required by ES to find the optimal is 1.96 
and 2.31 times higher than that required for GA and 
SA, respectively. In spite of the lower requisition on 
the number of simulations with SA for this specific 
case, the comparison between GA and SA are not 
conclusive and more simulations and the study in 
other geometries are needed. 

Figure 4 illustrates a comparison between the 
temperature field obtained for the optimal geometry 
and the extreme geometries in the valid solution 
space for the case where H/L = 1.0 and t1/t0 = 11.0 
and for the following constraints:  = 0.05 and ψ = 
0.3. The results presented here are obtained only with 
the used of SA. Figure 4(a) shows the temperature 
field for the lower extreme of the search space ( L1/L0 
= 0.001), while in Fig. 4(b) it is presented the twice 
optimized geometry and Fig. 4(c) depicts the upper 
extreme of the ratio L1/L0 studied (L1/L0 = 1.0). 
Similarly to what was noticed in previous works of 
Biserni et al. (2004) and Lorenzini et al. (2014a), the 
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employment of Constructal Design allowed the 
improvement of thermal performance by means of 
geometrical evaluation. For the showed cases, the 
optimal geometry, Fig. 4(b), has a thermal 
performance nearly 81% and 39% superior than that 
achieved with the lowest and highest extremes of the 
ratio L1/L0, Fig. 4(a) and 4(c), respectively. It is also 
seen that the maximum thermal performance is 
obtained for the geometry which led to the most 
homogeneous temperature field, i.e., according to the 
Constructal principle of “optimal distribution of 
imperfections” (Bejan, 1996; Bejan, 200; Bejan and 
Lorente, 2008). 

 

 
 

Figure 4. Temperature  Fields for the geometries with 
various ratios of the  L1/L0: a) L1/L0 = 0.001, b) L1/L0 

= 0.007 (optimal), c) L1/L0 = 1.0. 
 
Table 5 demonstrates the results achieved with 

the Simulated Annealing (SA) for different values of 
t1/t0 for a fixed value of H/L = 1.0, as well as, the 
results reached with GA and ES in studies of 
Lorenzini et al. (2014a). The results showed that the 
search algorithm meta-heuristics and combinatorial 
found  the same optimal shapes obtained with ES, 
showing that the use of Simulated Annealing (SA) 
algorithm is adequate for optimization of heat 
transfer problems combined with Constructal Design. 
Concerning the number of required iterations to find 
the optimal geometries, both methods (GA and SA) 
led to a strong reduction of computational effort 
required to obtain the optimal shapes. With exception 
of the case t1/t0 = 11.0, the GA required lower 
simulations than SA for every ratios of t1/t0 studied. It 
is worthy to mention that the number of simulations 
required with SA to obtain the optimal geometries 
has a large variation for each value of t1/t0 
investigated. For instance, for t1/t0 the number of 
iterations varied from a minimum of 49 simulations 
to a maximum of 381 simulations. A similar behavior 
is noticed for the simulations with GA. Therefore, in 
spite of the advantage of GA for the results of Table 
5, the comparison between SA and GA are not 
conclusive. Future studies are required to evaluate the 
reliability of both methods (number of times where 
the global optimal is achieved) and the number of 
simulations required for problems with more degrees 
of freedom.  

In order to evaluate the capability of SA to 
represent the effect of geometry over the thermal 
performance, Fig. 5 shows the effect of the ratio t1/t0 

over the twice minimized maximal excess of 
temperature, (θmax)mm, and the respective optimal 
shapes: (L1/L0)o and αoo. The results not only showed 
that SA is suitable to find the minimal temperature 
and optimal shapes, but is also suitable for prediction 
of the effect of the degrees of freedom (DOF) over 
the performance of flux system, which is extremely 
important in the studies of geometrical evaluation 
with constructal design. 

 
Table 5. Compare between the results obtained  with 
SA, AG and ES for a optimization with following 
fixes parameters: H/L = 1.0,  = 0.05 e ψ = 0.3 . 

Parameter / Study SA 

Lorenzin
i et al. 

(2014a) 
GA 

Lorenzini 
et al. 

(2011) 
ES 

t1/t0 = 7.0 

Iter. 
(α)oo 

(L1/L0 )o 
(θmax)m 

141 
1.48 

0.001 
0.0700 

31 
1.48 

0.001 
0.0700 

527 
1.48 

0.001 
0.0700 

t1/t0 = 10.0 

Iter. 
(α)oo 

(L1/L0 )o 
(θmax)m 

149 
1.54 

0.001 
0.0639 

47 
1.54 

0.001 
0.0639 

649 
1.53 

0.001 
0.0639 

t1/t0 = 11.0 

Iter. 
(α)oo 

(L1/L0)o 
(θmax)m 

143 
1.55 

0.007 
0.0611 

169 
1.55 

0.007 
0.0611 

331 
1.55 

0.007 
0.0611 

t1/t0 = 12.0 

Iter. 
(α)oo 

(L1/L0 )o 
(θmax)m 

119 
1.53 
0.05 

0.0642 

52 
1.53 
0.05 

0.0642 

385 
1.53 
0.05 

0.0642 
 

 
 

Figure 5. Comparison between results of the 
Exhaustive Search Method and optimal points found 

with Simulated Annealing in function of t1/t0. 
 
CONCLUSIONS 
 

In the present work it was performed a 
numerical study about the employment of combined 
Constructal Design and Simulated Annealing (SA) 
for geometric evaluation and optimization of an 
isothermal Y-shaped cavity intruded into solid 
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conducting wall with internal heat generation. The 
optimization results found with SA were compared 
with those achieved with Exhaustive Search (ES) and 
Genetic Algorithm (GA) presented in Biserni et al. 
(2004) and Lorenzini et al. (2014a). 

The results obtained in the present work showed 
that the employment of Simulated Annealing is a 
suitable methodology in combination with 
Constructal Design for geometric optimization of 
heat transfer problems. Firstly, it was investigated 
four different cooling schedules. The hybrid method 
named Boltzexp increased significantly the reliability 
in the seek for the optimal shapes. For instance, the 
method Boltzexp reached to the global optimal 
geometry in 90 % of executions performed with the 
code, while the method Fast achieved only in 50 % of 
executions. In this sense, the Boltzexp function was 
employed in the search for the evaluation of three 
degrees of freedom in the Y-shaped cavity. 

Concerning the seek for the optimal geometries, 
the twice minimized maximal excess of temperature, 
(θmax)mm and their respective optimal shapes ((L1/L0)o 
and αoo) obtained with SA are the same previously 
predicted with ES and GA. The computational effort 
required with SA and GA were strongly lower than 
that necessary with ES. The results showed that SA 
combined with Constructal Design is not only 
suitable to find the best geometries of the Y-shaped 
cavities but also for prediction of the effect of 
geometric parameters (degrees of freedom) over the 
thermal performance of heat transfer problems. 

Future studies will be performed to evaluate 
new complex geometries combining SA and GA with 
Constructal Design to find the optimal geometries 
and evaluate the effect of geometric parameters over 
cavities intruded into conducting solid walls.  
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