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ABSTRACT 
 
Numerical experiments for four test problems are carried out to demonstrate 
the performance of the present method and to compare it with the others 
classical methods. The numerical solutions obtained are compared with the 
analytical solution as well as the results by other numerical schemes with 
emphasis on the application involving heat exchange in a rectangular 
channel. It can be easily seen that the proposed method is simple to 
implement and very efficient.. 
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NOMENCLATURE 
 
kx,ky, kz thermal conductivityin the x,y,z-directions, 

respectively 

pc  heat capacity 
t time 
T temperature 
 
Greek symbols 
 
 mass density 
 
INTRODUCTION 
 

Problems involving the advection-diffusion 
equation have important applications to fluid 
dynamics as well as many other branches of science 
and engineering.Because the analytical solution of 
these equations containing complex initial and 
boundary conditions are very difficult, many authors 
have used various numerical techniques for the 
solution of this equation as the finite element 
methods(Zienkiewicz et al., 2013), the finite volume 
methods(Malalasekera and Versteeg, 2007), the 
shooting method (Roberts and Shipman, 1972),the 
graphical methods (Welty et al., 2001),the modified 
domain decomposition method (Wazwaz, 2001), the 
Cole-Hopf transformation (Fletcher, 1983), the radial 

basis function collocation method (Islam et al., 2012), 
the differential transform method (Liu and Hou, 
2011), the differential quadrature method (Mittal and 
Jiwari 2009), the Adomian decomposition method 
(Zhu et al., 2010) and the finite difference methods 
(Thomas, 1995, Morton and Mayers, 1994, Forsythe 
and Wasow, 2013) used in this work, are other 
approaches for solve the advection-diffusion 
equation. 

In recent years, there exist a lot of studies 
devoted to the numerical approximation to the three-
dimensional advection-diffusion equations and its 
applications using the high-order finite difference 
method for solution. For example, (Dehghan, 2004) 
developed several second order fully explicit 
(unconditionally stable) and fully implicit 
(conditionally stable) difference schemes with 
constants coefficients. (Thongmoon et al., 2007) used 
the finite difference method to solve the three-
dimensional advection-diffusion that describes a 
mathematical model for transport of a pollutant in a 
street tunnel. Pollutant dispersal patterns within the 
tunnel were calculated and numerical results for 
several different pollutant source configurations were 
presented and discussed. (Prieto et al., 2011) used the 
application of the generalized finite difference 
method to solve the advection-diffusion equation by 
the explicit method and studied the convergence of 
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the method and the truncation error over irregular 
grids. The example presented numerical example 
shows that a decrease in the value of the time step, 
always below the stability limits, leads to a decrease 
in the global error. (Ge et al., 2013) developed an 
exponential high order compact alternating direction 
implicit method with fourth-order in space, second 
order in time and unconditionally stable and solved 
three numerical problems to demonstrate the high 
accuracy and efficiency and to show its superiority 
over the classical Douglas-Gunn ADI scheme and the 
Karaa’s high order ADI scheme. 

Among the range of applications, simulations of 
rectangular cooling channels, such as happens in cold 
storage, have often been discussed in recent works 
(Smale et al., 2006; Hao and Ju, 2011) and will be 
operated in the Application 4 of this work. 
 
GOVERNING EQUATIONS: TEMPORAL AND 
SPATIAL DISCRETIZATION 
 

A In this work, we propose a solution by the 
high-order finite difference method for the three-
dimensional advection-diffusion equation which is 
given by. 
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considering kx, ky e kz as thermal conductivity in the 
x,y,z-directions, respectively,   as mass density 

and pc  as heat capacity. 

Rearranging the Eq. (1), taking 
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   where ,x y  and z  is the 

thermal diffusivity in the x,y,z-directions, 
respectively, and using the Crank-Nicolson method to 
carry out the time discretization, we obtain: 
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In the applications 1 and 2 below, the initial 

value of the exact solution is taken as the initial 
condition, and boundary conditions are also specified 
by the above equation and change with time. 
However, for the applications 3 and 4, the conditions 
will be specified in the same case. 

The following criteria will be used for the 
spatial discretization of the previous equation: 
- For nodes with x and y distant from the boundary 
using the Central Difference Method with O(x2), we 
have: 
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- Now, for the other nodes, using the Central 
Difference Method with O(x4), we have: 
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RESULTS AND DISCUSSION 
 

The linear system generated by governing 
equation and the boundary conditions were solved via 
a Gauss-Seidel method, considering the maximum 
error for stopping criterion for the Gauss-Seidel of 
10-8. All computations were run on a Intel Core 
i7/2.4G private computer using double precision 
arithmetic. 

In the applications 1 and 2, the computational 
domain is 0  x, y, z  1 with t = 1 and was used a 
uniform grid x=y=z and was compared accuracy 
under the L∞  norm errors, which is the maximum 
error in the entire domain, given by 
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result of the numerical and analytical solution, 
respectively. Now, in the application 3, we used the 
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Application 1 
 

In this application,we considered a pure 
diffusive case according to the equation 
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T with an analytical solution 

given by T(x,y,z,t)= e(t+x+y+z). Table 1 shows the 
comparison between the present results and the 
analytical solution, which made an analysis of the L∞ 
norm of error in the numerical solution of T(x,y,z,t). 
The CPU time, according to the configurations 
mentioned above, is listed in Table 2. 

 
Table 1. L∞  norm of the error committed in T - 
Application 1. 
t 

 

x = y = z 

1/10 1/20 1/40 1/50 
0.1 2.18E-03 1.81E-03 1.79E-03 1.79E-03 

0.05 9.29E-04 4.76E-04 4.50E-04 4.48E-04 
0.01 6.25E-04 6.27E-05 1.91E-05 1.74E-05 
0.005 6.16E-04 5.74E-05 6.13E-06 4.20E-06 
0.001 6.13E-04 5.60E-05 4.40E-06 1.90E-06 

 
In Table 1 is noted that the numerical results for 

some refined meshes was obtained a precision of at 
six decimal places, which is considered suitable for 
engineering. 
 
Table 2. Computational time (s) - Application 1. 
t 

 

x = y = z 

1/10 1/20 1/40 1/50 
0.1 0.859 12.266 291.594 856.844 
0.05 1.125 14.156 334.063 1019.172 

0.01 2.219 19.203 439.656 1269.281 

0.005 2.734 24.485 453.406 1494.672 

0.001 8.844 52.343 709.250 2009.328 
 
Application 2 

 
Now, this is a advective-diffusive case 

according to the governing equation 
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which analytical 

solution is T(x,y,z,t)=e(t+x+y+z). Similarly to the 
previous application, the Table 3 and 4, show, 
respectively, the comparison between the present 
results and the analytical solution, which made an 
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analysis of the L∞ norm of error in the numerical 
solution of T(x,y,z,t) and the CPU time. 
 
Table 3. L∞  norm of the error committed in T - 
Application 2. 
t 

 

x = y = z 

1/10 1/20 1/40 1/50 
0.1 4.92E-04 6.27E-04 6.35E-04 6.36E-04 

0.05 1.36E-04 1.49E-04 1.57E-04 1.57E-04 
0.01 2.11E-04 1.73E-05 4.96E-06 4.93E-06 
0.005 2.13E-04 1.86E-05 1.30E-06 5.20E-07 
0.001 2.14E-04 1.91E-05 1.49E-06 1.48E-06 

 
Table 4. Computational time (s) - Application 2. 

t 
 

x = y = z 
1/10 1/20 1/40 1/50 

0.1 1.375 18.875 492.563 1547.500 
0.05 1.906 27.766 778.922 2222.391 
0.01 3.031 40.454 1136.250 3210.422 
0.005 4.954 46.297 1273.188 3604.047 
0.001 11.562 89.500 1535.500 4204.719 

 
Application 3 
 

In this application, was considered an advective-
diffusive case with the governing equation 
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Tian and Zhang (2013); Karaa (2006)]:  
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The Dirichlet boundary and initial conditions 
are directly taken from this analytical solution. The 
computational domain is 0  x,y,z  2 and t = 1.25 
and the regular mesh with h = x = y = z was 
used.We adopt h = 0.025 so as to compare the results 
obtained in this work the ones presented by [Ge, Tian 
and Zhang (2013)] in which three methodologies 
were implemented for the solution of convection-
diffusion equation, all based on the alternating 
direction implicit method. We may note from Table 
5, the results of this study in comparison with the 
literature, have an equal or higher accuracy for the 
different values of . Even considering a coarse mesh 
(h = 0.05), the methodology proposed here achieves a 
precision equivalent to those obtained by other 
authors with a very refined mesh. 

 
 

Table 5. L2error with h = 0.025 and h = 0.05, t = h2, t = 1.25and different  - Application 3. 

 

h = 0.025 h = 0.05 

Douglas–Gunn 
ADI scheme [Ge, 
Tian and Zhang 

(2013)] 

Karaa’s ADI 
scheme [Ge, Tian 

and Zhang 
(2013)] 

Exponential high order 
compact ADI scheme 
[Ge, Tian and Zhang 

(2013)] Present work 
Present 

work 
5 5.599E-04 5.184E-05 5.266E-05 5.261E-06 4.900E-05 

10 5.764 E-04 5.268E-05 5.309E-05 1.353E-05 5.431E-05 

20 5.991E-04 6.978E-05 6.674E-05 4.845E-05 8.152E-05 

40 7.329E-04 2.035E-04 1.858E-04 1.907E-04 2.413E-04 
 

Table 6. Computational time (s) - Application 3. 

 

h = 0.025 h = 0.05 
Douglas–Gunn 

ADI scheme [Ge, 
Tian and Zhang 

(2013)] 

Karaa’s ADI 
scheme [Ge, 

Tian and Zhang 
(2013)] 

Exponential high order 
compact ADI scheme 
[Ge, Tian and Zhang 

(2013)] Present work Present work 
5 762.04 1081.65 829.45 897.953 121.344 

10 379.87 551.39 412.14 476.562 72.203 

20 188.42 280.35 207.96 316.64 41.875 

40 97.45 142.28 104.11 138.891 28.36 
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Application 4 
 

In this case, we considered the equation 
2 2 2

2 2 2 0.
p

T T k T T Tw
t z c x y z

     
            

Considering Tair = 300 K, we adopt the following 
thermophysical properties [Incropera and DeWitt 
(1996)]:  = 1.1614 kg/m3, cp= 1007 J/kg.K,  
k = 0.0263 W/m.K for mass density, heat capacity 
and thermal conductivity, respectively. Thus, 

00022488.0
pc

k


. A parabolic velocity profile, 

representing a fully developed laminar flow was 
defined by [Romão and Moura 

(2012)]: ,y
L
yx

L
x
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2216 wh

ere maxU  is the top speed on the flow centerline. 
We assume air at atmospheric pressure and 

temperature 300 K, flowing into a rectangular 
channel with dimensions zyx LLL  , considering 
the following boundary conditions, according the Fig. 
1: 
- in the plane XY with z = 0: T = Tinlet, being Tinlet the 
inlet temperature in the channel; 

- in the plane XY with z = Lz: 0



z
T ; 

- in the plane YZ with x = 0 or x = Lx: 0



x
T ; 

- in the plane XZ with y = 0: 0



y
T ; 

- in the plane XZ with y = Ly: T = Tc, being Tc  the 
cooling temperature of fluid. 
 

 
 

Figure 1. Computational domain and boundary 
conditions - Application 4. 

 
Considering an inlet temperature of 30º C, our 

objective is the cooling of air at an average 
temperature of 15º C in the outlet section of the 
channel. Taking Lx = Ly = 0.2 m; Lz = 1 m and  
Lt = 100 s and considering a mesh refinement  
x = Lx/40, y = Ly/40, z = Lz/100 and t = Lt/500. 
By varying the values of the cooling temperature (Tc) 
at the entrance, the results of average temperature in 
the output section of the channel, here denoted by Ta, 

are shown in Table 7, considering the order of 
accuracy with two decimal places. 

In Table 7, we note that as the cooling 
temperature decreases by 1°C, the average 
temperature of the output section is reduced to 0.16 
°C. Thus, in order to achieve a mean temperature of 
15 °C in the output section will require a cooling 
temperature of approximately -64.25 ºC. 

 
Table 7. Results of Ta at the outlet section of the 
channel depending on thecooling temperature in the 
entrance (Tc), considering x = Lx/200,y = Ly/10,  
z = Lz/100 and t = t/500. 

 
Two other strategies for the expected average 

temperature is achieved on the output variation were 
the length and size of the inlet section of the channel. 
Thus, taking Lx = Ly = 0.2 m and varying Lz and  
Lt = 100 s,considering a mesh refinement 
x = Lx/40, y = Ly/40, z = 0.01 and t = Lt/500, 
with Tc = 1º C, the obtained numerical values shown 
in Table 8. Note, that it was necessary length z = 3 m 
so that the temperature of 23.35 ° C was reached. 
Likewise, to reach 22.22°C, it was necessary to 
z = 6 m, indicating the relation between the variation 
of the channel length and cooling the same. It can be 
noted clearly, that for the conditions in this case, the 
variation of the channel length, the average 
temperature tends to stagnate at a value close to  
22 °C. 
 
Table 8. Results of Ta  at the outlet section of the 
channel depending on the variation of the channel 
length,  considering x = Lx/40, y = Ly/40, z = 0.01 
and t = Lt/500. 

Lz (m) Ta (ºC) 
1.0 25.34 
1.5 24.67 
2.0 24.14 
2.5 23.71 
3.0 23.35 
3.5 23.06 
4.0 22.81 

Tc(ºC) Ta (ºC) 
10 26.78 
9 26.62 
8 26.46 
7 26.30 
6 26.14 
5 25.98 
4 25.82 
3 25.66 
2 25.50 
1 25.34 
0 25.18 
-1 25.02 
-2 24.96 
-3 24.80 
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4.5 22.61 
5.0 22.45 
5.5 22.32 
6.0 22.22 
6.5 22.16 

 
Considering, now, the variation of the inlet 

section of the channel and taking Lx = Ly; varying Lz= 
1 m and Lt = 100 sand considering a mesh refinement 
x = y = 0.005, z = Lz/100 and t = Lt/500, with  
Tc  = 1º C, we obtained the values shown in Table 9.It 
can be noted that for Lz = 1 m, Lx = Ly = 0.1 m,  
Tc  = 1ºC and Lt = 100 s was achieved Ta 22.45ºC. 
However, modifying Lt = 200 s or Lt = 300 s, the 
results in the output section have not changed, which 
proves the steady state temperature distribution. 
Another test was carried out by taking Lz = 5m,  
z = Lz /500, Lx = Ly = 0.1 m, x = y = Lx /20,  
Lt = 100 s, t = Lt/500 to Tc = 1ºC. The results 
obtained in this case are shown in Fig. 2. It can be 
noted that the mean temperature of 15° C was 
achieved in 100s. 
 

 
 

Figure 2. Results of the average temperature in the 
outlet section of the channel depending of time - 

Application 4. 
 

Table 9. Results of Ta at the outlet section of the 
channeldepending on the variation of the channel 
length,considering x = Lx/40, y = Ly/40, z = 0.01 
and t = Lt/500. 

 

CONCLUSIONS 
 

In this paper, we propose a high-order Finite 
Difference Method for three-dimensional heat 
transfer equation. Numerical examples show that the 
method can be used to simulate the numerical 
solution of the equation, with emphasis on the 
application involving heat exchange in a rectangular 
channel. By observing the detailed comparison of 
numerical and analytical results, it is convinced that 
the proposed scheme is very simple, stable and 
accurate for the solutions of the heat transfer 
equation.  
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