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ABSTRACT 
 
This work discuss the usual constant conductivity assumption and its 
consequences when a given material presents a strong dependence between 
the temperature and the thermal conductivity. The discussion is carried out 
considering a sphere of silicon with a given heat generation concentrated in 
a vicinity of its centre, giving rise to high temperature gradients. This 
particular case is enough to show that the constant thermal conductivity 
hypothesis may give rise to very large errors and must be avoided. In order 
to surpass the mathematical complexity, the Kirchhoff transformation is 
used for constructing the solution of the problem. In addition, an equation 
correlating thermal conductivity and the temperature is proposed. 
 
 
Keywords: conduction heat transfer, Kirchhoff transformation, thermal 
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NOMENCLATURE 
 
div  denotes the divergence 
grad  denotes the gradient 
h  convection coefficient 
k  thermal conductivity 
n  the unit outward normal 
q  internal supply (per unit volume) 
Q  heat dissipation 

2R  radius of the sphere 

1R  radius of the region with 0q   
r  radial variable 
T  absolute temperature 
T  temperature of the environment 

, ,x y z  usual Cartesian coordinates 
 
Symbols 
 
 TK  the Kirchhoff transformation 

 -1K  the inverse of K  

  the function arising from  TK  
  bounded open set 
  the boundary of   
 
 
INTRODUCTION 

 
The thermal conductivity depends on the 

temperature for all the materials. Nevertheless, 
conduction heat transfer problems are, in general, 
simplified by means of the constant thermal 
conductivity assumption (Incropera and Dewitt, 
1996).  

The main objective of this work is to show that 
there exist situations in which the thermal 
conductivity assumption gives rise to non negligible 
errors. In such cases, the dependence between the 
thermal conductivity k  and the temperature T  must 
be taken into account. 

Aiming to illustrate the importance of taking 
into account the dependence between k  and T , let 
us consider the high purity silicon and its thermal 
conductivity. In general, the thermal conductivity for 
this material is assumed to be 130 /W mK (Goldberg 
et al., 2001). But this value corresponds, 
approximately, to the conductivity at 340 K . Table 1 
below (Glassbrenner et al., 1964) shows that the 
thermal conductivity of the silicon is strongly 
dependent on the temperature. 

 
Table 1. The thermal conductivity k  for the silicon. 
 T K   /k W mK  ░░░  T K   /k W mK  

200 264 ░░░ 500 76.2 
250 191 ░░░ 600 61.9 
300 148 ░░░ 800 42.2 
350 119 ░░░ 1000 31.2 
400 98.9 ░░░ 1200 25.7 

 
An approximation for the above table, within 

the range 200 1200K T K  , is proposed here by 
means of the following equation 
 

 
 

2
1220ˆ

ln
k k T

T T

     
  

 (1) 

 
in which the error is less than 5%. Equation (1) gives 
rise to table 2. 
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Table 2. The thermal conductivity k  for the silicon, 
obtained from Eq. (1). 
 T K   /k W mK  ░░░  T K   /k W mK  

200 265.1 ░░░ 500 77.1 
250 195.3 ░░░ 600 60.6 
300 152.5 ░░░ 800 41.6 
350 123.9 ░░░ 1000 31.2 
400 103.7 ░░░ 1200 24.7 

 
Let us consider the well known steady-state 

conduction heat transfer problem with convective 
boundary condition, given by (Gama et al., 2013) 
 

 
 

0div k grad T q in

k grad T h T T on

  

   n




 (2) 

 
in which   is a bounded open set with boundary 
 , q  represents an internal heat source (a known 
function), h  is the convection heat transfer 
coefficient, T  is the temperature of the environment 
(a known constant) and n  is the unit outward normal. 
In Eq.(2), T  is the unknown and the conductivity k  
depends on T . 

At this point a question arises: is it important to 
take into account the dependence between k  and T ? 

 

 
THE KIRCHHOFF TRANSFORMATION 
 

 The Kirchhoff transformation of T  may be 
defined as follows (Arpaci, 1966) 
 

   
0

ˆ
T

T k d    K  (3) 

 
The inverse of the Kirchhoff transformation is 

denoted by  1 K  and represents the temperature. 

In other words,  1T K . 
Since equation (3) requires the knowledge of k  

for any  0,T   , we consider the following 
relations 
 

 

 

2

2

1220 , 200
ln

1220 , 200
200 ln 200

for T
T T

k

for T

          
    
  

 

(4) 
 

Taking into account  Eq. (3), we may write  
 

   
grad k grad T and
div k grad T div grad








 (5) 

 

and rewrite Eq. (2) as follows 
 

 
  1

0div grad q in

grad h T on



 


  

   n



 K
 (6) 

 
The Kirchhoff transformation is, therefore, 

given by 
 

     

2

0

1220ˆ ,
200 ln 200

0 200

T TT k d

for K T K

  
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 

= K  (7) 

 
and by 
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(8) 
 
THE INVERSE OF THE KIRCHHOFF  
TRANSFORMATION 

 
From Eqs. (3) and (4) we have that the inverse 

of the Kirchhoff transformation is given by 
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(9) 
  

AN EXAMPLE 
 

Let us suppose a body represented by the set 
(sphere with radius 2R ) 

 
  3 2 2 2 2

2, ,x y z such that x y z R       
 

where the region 2 2 2 2
1x y z R    have an uniform 

heat dissipation given by Q . 
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Figure 1. The spherical body. 
 
Representing the problem in a convenient 

spherical coordinates system, in which 
2 2 2 2r x y z   , we have 
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(10) 
 
or, with the aid of the Kirchhoff transformation 

 T K , 
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The above problem has the following solution 
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or,  
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with  
 

 2 2
11

3
2 11

12
2

1
2

2 2

1 2

1 1
48

, 0
4

1 1 ,
4 4

Q R r Q
R RR

Q T for r R
hRT

Q Q T
r R hR

for R r R





 








         
  
          



                
  

K

K

K K

 

(14) 
 

It is easy to note that the temperature at 2r R  
does not depend on the thermal conductivity, and is 
given by  

 

2 2
24r R

QT T
hR 

   (15) 

 
Now, let us evaluate the temperature at 1r R  

considering two cases: 
 
Case 1): k  given by Eq. (4) 
 
Case 2): 0k k constant  , in which 0k  is the 

mean value of k  obtained from the above case for 
1 2R r R  . 

In order to provide explicit results, let us 
consider the following data:  

 

2
2

1 2

300 , 200 ,
4

0.001 , 0.005

QQ W T K
hR

R m R m


   

 
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Thus, for case 1, we have  
 

21 1 122075 ,
0.005 ln 200

0.001 0.005
r

for r

         
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and 
 

2
1 1 1 122075 ,

0.005 ln 200

0.001 0.005

T
r
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So, once that 200T K  everywhere, we have  
 

 

 

1
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2

1 1exp
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
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(19) 
 
with   given by (17). 

Hence, at 1 0.001r R m   the temperature is 
843.2T K .  
The mean value of k  for 200 843.2K T K   

is 152.0 /W mK . Now, let us consider the case 2 with 
0 152 /k k W mK  . 
The expression for   is the same one. 

However, T  is given by  
 

 

0 2

1 22
2

1 1 1   
152 4

   152 ,     
4
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k r R

Q T for R r R
hR




 

       
  
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(20) 
 
Inserting the considered data, Eq. (19) becomes  

 
75 1 1 200,

152 0.005
0.001 0.005

T
r

for r
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 

 
 

(21) 
 

So, at 1 0.001r R m   we have 594.7T K . 
In other words, the constant conductivity assumption 
gives rise to a temperature 248.5K  below the actual 
one. If the conductivity was assumed the one for 

340T K  ( 130 /k W mK ), the temperature at 

1 0.001r R m   would be equal to 661.5T K . 
 

FINAL REMARKS 
 

In this work it was shown that the dependence 
between the thermal conductivity and the temperature 
can not be neglected without a careful analysis. When 
this analysis is not possible before the simulation, the 
obtained results may give an insight about how much 
they are reliable. For instance, after a simulation 
assuming constant thermal conductivity, we must 
verify if the temperature levels are compatible with 
the considered value for the thermal conductivity. 
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