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ABSTRACT  
 
This work concerns with numerical simulations of creeping and 
inertial flows of viscoelastic fluids. The mechanical model consists 
of mass and momentum balance equations, coupled with the 
Oldroyd-B fluid. The model is approximated by a multi-field 
Galerkin least-squares (GLS) methodology in terms of extra-stress, 
velocity and pressure. The GLS method, introduced by Hughes et al. 
(1986) in the context of the Stokes problem for Newtonian fluid 
flows, allows the use of combinations of equal-order finite element 
interpolations and remains stable even for elastic- and inertia-
dominated fluid flows. Some steady simulations of Oldroyd-B fluids, 
flowing over a slot, are herein carried out. The influence of inertia 
and fluid viscoelasticity is taken into account ranging the Reynolds 
and Weissenberg numbers for relevant values of this flow. The 
results are in accordance to the viscoelastic literature and reassure 
the fine stability features of the GLS formulation. 
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NOMENCLATURE 

 
D strain rate tensor (s-1) 
f bofy force (N) 
H channel height (m)  
Lc Characteristic length (m) 
N1 First normal stress difference (Pa) 
p hydrostatic pressure (Pa) 
Rer      Rheological Reynolds number 
u velocity vector (m/s) 
x coordinate vector (m) 
Wi       Weissenberg number 
 
Greek symbols  
 
α stability parameter for momentum equation 
β stability parameter for the material equation 
δ stability parameter for continuity equation 
γ&  strain rate, s-1 
λ relaxation time (s) 
ρ density, kg/m3 
τ extra-stress magnitude (Pa) 
τ extra-stress tensor (Pa) 
µ viscosity (Pa.s)  
 
Subscripts  
 
s solvent 
p polymeric 

Superscripts  
 
* dimensionless variables 
 
INTRODUCTION  
 

Numerical methodologies are an important tool 
to study fluid flows involving complex fluids, since 
experiments with those materials can be very 
expensive and time consuming. In the last three 
decades, lots of effort have been done on the 
development of accurate methods to analyze flows of 
viscoelastic fluids through complex geometries 
employing different constitutive equations and 
benchmark problems. However, difficulties to 
achieve convergence for highly elastic fluids still 
occur, and the problem continues under investigation 
in the literature. 

The present article performs multi-field 
Galerkin least-squares (GLS) approximations in 
terms of extra-stress, pressure and velocity fields, for 
non-linear differential viscoelastic flows. The 
selected model is the upper-convected Oldroyd 
model, namely the Oldroyd-B model. This GLS 
methodology – introduced by Hughes et al. (1986) 
for the Stokes problem, was later extended to mixed 
Navier-Stokes equations in Franca and Frey (1992) 
and multi-field Navier-Stokes equations in Behr et al. 
(1993). It does not need to satisfy the compatibility 
conditions arisen from finite element sub-spaces for 
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the pair pressure–velocity – known as Babuška-
Brezzi condition – and for the pair extra-stress–
velocity. This is accomplished by adding mesh-
dependent terms, which are functions of residuals of 
the flow governing equations, evaluated element-
wise. In this way, both conditions may be 
circumvented and the methodology still remains 
stable – employing simple combinations of equal-
order finite element interpolations – even for locally 
elastic-dominated flows, in which the upper-
convected derivative of the extra-stress tensor plays a 
relevant role. 

The Oldroyd-B model may accommodate both 
the Newtonian and upper-convected Maxwell 
models, covering the cases where an elastic fluid 
described by the Maxwell relation is mixed with a 
fluid governed by the Newton's law of viscosity – it 
corresponds to a situation in which an elastic polymer 
with a given viscosity is dissolved in a viscous 
solvent with different viscosity. The Maxwell fluid 
presents some difficulties on numerical simulations, 
partially because of the convective character of the 
stress evolution equation. With the small addition of 
a Newtonian solvent in the Oldroyd-B fluid model, 
the issue associated with the discretization of 
advective systems is strongly minimized. 

The numerical solution of steady flows of 
Oldroyd-B fluids over a square slot is obtained and 
compared with some results from the literature. The 
geometry and the viscosity ratio are held fixed. The 
elastic effects are evaluated for a Weissenberg 
number range from 0 to 0.3; the inertia effects are 
evaluated for a rheological Reynolds number range 
from 0 to 75. All numerical results proved to be 
physically meaningful, and in accordance with the 
related literature.  
 
MECHANICAL MODELING  
 

Let  Ω be the fluid domain, an open bounded 
subset of ℜ2 with a regular polygonal boundary Γ. A 
multi-field boundary-value problem for steady flows 
of Oldroyd-B fluids may be formed coupling the 
upper-convected Maxwell viscoelastic equation with 
the continuity and momentum equations – adding to 
the last a diffusive term to accommodate the effects 
of the addition of a Newtonian solvent (Behr et al., 
2004) – subjected to appropriate velocity and stress 
boundary conditions: 
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where u is the velocity vector, p is the hydrostatic 
pressure, and τ is the extra-stress tensor – the primal 
variables of the problem; ρ is the fluid density, λ is 
the fluid relaxation time, µs and µp are, respectively, 
the solvent and the polymeric viscosity, D is  the 
strain rate tensor, f is the body force, τh is the stress 
vector, ug and τg are the imposed velocity and extra-
stress boundary conditions, respectively, and  

( 
τ  

stands for the upper-convected time derivative of τ: 
 

( ) ( ) ( )u u uT∇ − ∇ ∇(τ = τ τ − τ  (2)
 

In order to obtain the dimensionless governing 
parameters, the rheological normalization introduced 
by de Souza Mendes (2007) is applied. Therefore, the 
following set of dimensionless quantities are 
introduced: 
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where cγ& is the characteristic strain rate of the flow, 
and Lc is the characteristic length – in this work taken 
equal to 1/λ and H (the main channel height, see Fig. 
1), respectively – and µt = µp + µs. 

Hence, substituting the dimensionless variables 
introduced above into the boundary value problem 
given by Eq. (1), the dimensionless multi-field 
formulation for inertia flows of Oldroyd-B fluids is 
given by: 
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where ug  is the average of the modulus of the 
velocity vector ug at the channel inlet, and Rer is the 
rheological version for the Reynolds number, defined 
as 
 

( )
2Re c c c

r
t t c

L L
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The Weissenberg number, defined as the ratio 

between the fluid relaxation time and the flow 
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characteristic time, appears in the inlet boundary 
condition and is computed as 
 

u gc

Wi
L

λ
=  (6)

 
For Oldroyd-B fluid flows, the Reynolds 

number usually employed in the literature is related 
to the rheological Reynolds number by Re=Rer Wi. 

Remark: The rheological Reynolds number 
defined by Eq. (5) is a dimensionless group based 
only on the rheological fluid properties, and, 
therefore, entirely uncoupled from the flow 
kinematics. De Souza Mendes (2007) suggests this 
definition claiming that Rer may be viewed as a 
dimensionless fluid density. 
 
THE FINITE ELEMENT APPROXIMATION 
 

Based on usual definitions of finite element sub-
spaces for extra-stress (Σh), pressure (Ph) and velocity 
(Vh) (see, for instance Behr et al. 1993), a multi-field 
GLS formulation for Oldroyd-B fluid flows may be 
written as: Find the triple 

 
τ h , ph ,uh ; Sh ,qh , vh( )∈ Σ h × P h × V h   

 
such that 
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where Rerk denotes the grid rheological Reynolds 
number; α( Rerk), β and δ are the stability parameters 
for the motion, material and continuity equations, 
respectively – see Franca and Frey (1992) and Behr 
et al. (1993) for their definitions. 
 
NUMERICAL RESULTS 
 

The multi-field GLS approximation for 
Oldroyd-B fluids (Eq. 7) is employed to simulate the 
flow over a one-to-one slot. Fig. 1 shows the 

geometry and a blown-up view of the employed mesh 
in the vicinity of the slot. The geometry is very 
similar to the ones used by Trogdon and Joseph 
(1982) and Mitsoulis et al. (2006). After a mesh 
independence test procedure, based on an acceptable 
error of 2% of the stress modulus value on the 
channel wall, the computational domain Wh is 
partitioned by 3,200 equal-order Lagrangian bi-linear 
(Q1) finite elements, rendering a total of 19,200 
degrees-of-freedom. The smallest dimensionless 
mesh size, hK

*
min=hK/H, is equal to 0.071. 

 

(a) 
 

 (b) 
 
Figure 1. Flow over a slot: (a) problem statement; 

(b) a mesh detail. 
 
The boundary conditions employed are 

impermeability and non-slip both on channel and on 
slot walls and viscoelastic fully-developed profiles 
for velocity and stress at the inflow and outflow of 
the channel. In addition, the relation between the 
solvent and total viscosities is held fixed - the chosen 
value used is in accordance with the related literature: 
 

0.59s

s p

µ
µ µ

=
+
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Figures 2 and 3 show the isobands for the 

dimensionless extra-stress τ11
*  and the first normal 

stress difference N1
* = τ11

* −τ22
* , for creeping flows 

(Rer=0) and the Weissenberg number ranging from 0 
to 0.3. It can be observed in Fig. 2 that τ11

*  is 
symmetric for the Newtonian fluid – Wi=0 (Fig. 2a) – 
in accordance with the inelastic fluid theory. When 
the Weissenberg number is increased, the Newtonian 
symmetry is broken, with the maximum value of τ11

*   
occurring at the downstream corner of the slot, being 
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approximately eight times the maximum Newtonian 
peak (see Figs. 2a and 2b). The asymmetry presented 
by the viscoelastic τ11

*  component is surely credited 
to increasing of the fluid elasticity induced by the 
growth of the Weissenberg number. In Fig. 3a, for 
Wi=0, the first normal stress difference N1

* is zero 
throughout the flow – the non-zero values of N1

* 
found in the figure are due to the singularity 
introduced by the sharp shape of the slot corners. The 
null field for N1

* is expected, since the Newtonian 
model is unable to prescribe non-null N1

* values for 
shear flows. For the viscoelastic case (Wi=0.3), a 
gradient of the first normal stress difference N1

* can 
be noticed near the channel walls and around the slot 
corners. Near the walls, boundary layers can be 
noticed and, around the channel centerline, a (flat) 
region of very small values for N1

* is obtained. The 
appearance of boundary layers near the walls shows 
that, for viscoelastic flows, there is the up rise of a 
local vertical force – proportional to the first normal 
stress difference – acting on both walls of the 
channel. 

 

 
(a) 

 

   
(b) 

 
Figure 2. τ11

*  isobands for creeping flows: (a) 
Wi=0; (b) Wi=0.3. 

 

 
(a) 

 

 
(b) 

 
Figure 3. First normal stress difference N1

* for 
creeping flows: (a) Wi=0; (b) Wi=0.3. 

 
The results for inertial flows of Oldroyd-B 

fluids are shown in Figs. 4-7. Figs. 4 and 5 show an 
increase of the extra-stress values acting on the 
downstream corner of the slot, certainly due to the 
increase of momentum upwind through the channel. 
For the horizontal (u1

*) and vertical (u2
*) velocity 

fields (Figs. 6 and 7), the increase of the rheological 
Reynolds number produces an effect similar to that 
produced by increasing the Weissenberg number for 
non-inertial flows, that is to say, the larger the 
Reynolds number, the greater the asymmetry of the 
velocity fields. It is worth mentioning that the 
asymmetry presented by Figs. 2-3 is produced by the 
upwind effect of the upper-convected derivative of 
the extra-stress tensor of Eq. (2), since the rheological 
Reynolds number is equal to zero for those figures. 
On the other hand, the asymmetry of the inertia flows 
illustrated in Figs. 4-7 is generated by the mixed 
upwind behavior from the inertia term of the equation 
of motion and from the elastic term of the Oldroyd-B 
constitutive equation. Increasing the amount of 
inertia in the upper channel shifts the vortex inside 
the slot to the right, thus creating greater horizontal 
and vertical velocities on the vicinity of its right wall. 
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Finally, it is important to emphasize that the 
rheological dimensionless quantities defined by Eqs. 
(3)-(6) have fundamental importance on the 
investigation of the effects of inertia and elasticity on 
the flow. Thanks to this new methodology, the 
amount of inertia on the flow can be increased 
without changing the level of the fluid elasticity, or 
more specifically, in Figs. 4-7 it is possible to 
increase the rheological Reynolds number and hold 
the fluid properties fixed, for the same Weissenberg 
number. 

 

(a) 
 

 (b) 
 

Figure 4. τ11
*  isobands for Wi=0.2: (a) Rer=5; (b) 

Rer=75. 
 

 
(a) 

 
(b) 

Figure 5. τ11
*  isobands for Wi=0.2: (a) Rer=5; (b) 

Rer=75. 
 
 

 
(a) 

 

 
(b) 

Figure 6. u1
* isobands for Wi=0.2: (a) Rer=5; (b) 

Rer=75. 
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(a) 

 

 
(b) 

Figure 7. u2
* isobands for Wi=0.2: (a) Rer=5; (b) 

Rer=75. 
 
FINAL REMARKS 
 

In this article, a multi-field GLS approximation 
for the Oldroyd-B constitutive model is introduced 
and discussed. Some numerical computations for 
inertia and inertialess flows through a channel over a 
slot are presented. The influence of inertia and fluid 
viscoelasticity on the velocity and stress fields were 
presented and analyzed, with the aid of a new 
definition of dimensionless rheological quantities. 
These are obtained following the definitions proposed 
in Souza Mendes (2007), which allows a better 
analysis of the effects of inertia and elasticity on the 
flow. The results obtained show that elasticity and 
inertia generate an increase of the asymmetry of the 
flow pattern. The results obtained for the first normal 
stress difference are in agreement with the literature – 
null for Newtonian fluids and increasing with 
elasticity. 
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