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ABSTRACT  
 
In this paper the Generalized Integral Transform Technique is employed to 
produce hybrid solutions for the velocity and pressure fields of a newtonian 
fluid in two dimensional flow. The problem is formulated by using primitive 
variables and the necessary mathematical manipulations were used to obtain 
the Poisson equation for the pressure field. The momentum equations in the 
axial direction of flow and Poisson are transformed to remove the transversal 
dependency. The resulting transformed fields are solved with the IMSL 
numerical subroutine, DBVPFD. The obtained results for the longitudinal 
velocity profile at the center of the channel are compared with the available 
data in the open literature for validation and model fitting. Even so, studies 
are carried out about the convergence of the solution for the velocity profile 
in the centerline as well as testing different values of the scale factor of axial 
coordinate for the choice of a factor which can fit perfectly for comparison 
with available data. Interest practical datas such as: friction factor and mean 
velocity are obtained along the duct for a entry condition into the parallel 
flow channel (v = 0). 
 
 
 

Keywords: Navier-Stokes, Poisson, Primitive Variables, Newtonian Fluid, 
GITT  
 

 
 
NOMENCLATURE 
 

mA  Coefficients of integral transformation defined 
by the equation (21 h) 

∞ikAB Coefficients of integral transformation defined 
by the equation (21 b) 

ijkAB
 
Coefficients of integral transformation defined 

by the equation (21 a) 
b  Distance between the centerline and the wall 

inC  Coefficients of integral transformation defined 
by the equation (21 c) 

∞iD   Coefficients of integral transformation defined 
by the equation (21 e) 

ikE  Coefficients of integral transformation defined 
by the equation (21 k) 

ijkE  Coefficients of integral transformation defined 
by the equation (21 l) 

iF
 
 Coefficients of integral transformation defined 

by the equation (17 b) 

ijkF
 

Coefficients of integral transformation defined 
by the equation (21 m) 

∞ikF  Coefficients of integral transformation defined 

by the equation (21 n) 
Gi  Coefficients of integral transformation defined 
by the equation (21 g) 

imG
  

Coefficients of integral transformation defined 
by the equation (21 j) 

matP
 
 Coefficients of integral transformation defined 

by the equation (21 f) 
Mi Full normalization of eigenfunction for the 
pressure field (14 f) 

iN  Full normalization of eigenfunction for the 
velocity field (13 e) 
P  Pressure, Pascal 

( )YXP ,*  Potential pressure developing field (10 c) 

ikQ  Coefficients of integral transformation defined 
by the equation (21 i) 
Re  Reynolds number 
( )yxu ,  Dimensional longitudinal velocity 

component, m / s  
( )yxv ,   Dimensional transverse velocity 

component, m / s  
X  Dimensionless longitudinal coordinate 
Y  Dimensionless transverse coordinate 
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x  Dimensional longitudinal coordinate, m 
y  Dimensional transverse coordinate, m 
 
 Greek symbols  
 

iβ    Eigenvalue associated with the pressure field 

inδ   Kronecker delta 
μ   newtonian viscosity, Pa.s 

iμ  Eigenvalues associated with the field of 
longitudinal velocity 
( )Yii ,μφ     Eigenfunction the problem of velocity 
( )Yii ,βψ    Eigenfunction the problem of pressure 

  
Subscripts  
 
F on the filter 
i,j,k  index of the order of the eigenvalues 
o on entry 
∞ relative to the end of the duct 
 
INTRODUCTION  

 
The analysis of the flows is of fundamental 

importance in our lives and in a lot of various areas 
of engineering, and this refers on the knowledge of 
the exact sciences and nature, such as mathematics, 
physics and mechanical engineering, for the 
preparation of models to be submitted to simulations 
and tests. The derivation and mathematical 
development enables the deployment, simplified 
solutions and physical interpretations and 
conclusions. The Navier-Stokes equations has been 
widely used in mathematical modeling for many 
phenomena in fluid mechanics. 

Using the Navier-Stokes and Poisson we can 
understand the physical phenomena and relate them 
to our everyday life. Therefore, we propose in this 
study develop a solution to the Navier-Stokes 
problem of hydrodynamics, a two-dimensional 
laminar flow of a newtonian fluid in circular duct 
with a formulation in primitive variables, with 
profiles of uniform velocity and pressure in the 
entrance. 

Even with the large number of previous studies 
on flow analysis, the theme is still attracting interest 
from researchers primarily in the hydrodynamic 
entrance region where viscous effects are more 
pronounced. The entrance region requires more 
complex analysis represented by robust formulations 
with greater mathematical difficulties associated with 
obtaining the velocity fields and pressure. 

The knowledge of the pressure field along the 
flow can help to monitor and control over the flow of 
fluids. An application example is the oil and gas, 
preventing and reducing environmental damage. 

Over the years, we can observe the 
developmentof studies involving laminar flows of 
fluids in the solution of the Navier – Stokes or 

Boundary Layer, the first numerical methods are: 
Wang and LongwelL (1964), Friedmann et al (1968) 
and McDonald et al (1972) and applying the 
Generalized Integral Transform Technique (GITT) 
and the stream function formulation are: Paz et al 
(2007), Silva et al (2009), Silva et al (2004), Pereira 
et al (1998) among many others, and with the 
formulation in primitive variables, which is the 
formulation under study is still small, ie, there is little 
work in this area, we can cite Lima (2002), Lima et al 
(2006), and Veronese (2008). 

The Generalized Integral Transform Technique 
(GITT) arose more than two decades standing out as 
a powerful tool that allows the solution of the 
complex problems with the work of Özisik & Murray 
(1984) from the ideas of Integral Transform 
Technique Classical, Mikhailov & Özisik (1974). The 
G.I.T.T. provides hybrid numerical-analytical 
solutions for problems of diffusion and convection-
diffusion integral transformation which results in 
systems of ordinary differential equations coupled. 
Since then the application of G.I.T.T. has solved 
problems in more general classes, both linear and 
nonlinear. The most detailed and comprehensive 
study on G.I.T.T. was done by Cotta (1993). 

The main idea is to transform a system of partial 
differential equations in an original infinite system of 
ordinary differential equations by expanding in 
eigenfunctions, which is truncated to a number of 
terms required for convergence. The solution is 
obtained analytically for problems that can be 
transformed into decoupled systems that can be 
resolved simply, or numerically for more complex 
problems. 

This study aims to initially extend the application 
of the Generalized Integral Transform Technique 
(GITT) in the solution in terms of primitive variables 
of the Navier-Stokes equations for two-dimensional 
problem of flow in circular ducts with a newtonian 
fluid inside, taking into account the velocity and 
pressure with the Poisson equation. 

 
THE PROBLEM 

 
The physical model mathematical is the 

development of the use of a two-dimensional laminar 
flow of an incompressible newtonian fluid in a 
circular duct, shown in fig. 1 to solve the 
hydrodynamic problem is necessary to consider the 
following hypothesis: the effects of viscous 
dissipation are neglected, constant physical 
properties, impermeability and no-slip walls of the 
duct and steady, the longitudinal velocity (u) and 
transverse velocity (v). 
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Figure 1. Defining the proposed problem. 
 
MATHEMATICAL FORMULATION 

 
 The flow in a circular duct shown in fig. 1, is an 

application of the solution of the Navier-Stokes 
equation is a nonlinear partial differential 2nd order 
and formulated in primitive variables, whose general 
equations governing this problem are listed below: 
 
Continuity Equation:   
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Equation of Conservation of momentum in the y 
direction:                                                                  
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The Poisson equation is determined from the 

mathematical manipulations in the equations of 
momentum in the directions x and y. Be μ is the 
dynamic viscosity newtonian and ρ is the density. 
These equations appear in the analysis of problems in 
physics, in engineering and chemistry. 
 
Poisson Equation:           
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For the construction of the problem solution is 

applied the Generalized Integral Transform 
Technique (GITT) to provide a hybrid solution, ie, an 
analytical-numerical solution of the equations of 
conservation of momentum in the x and y directions 
of the Poisson equation, with knowledge of the 
velocity fields, pressure along the channel examined. 
And the soft computing will be appropriate if the 

FORTRAN and in particular the DPVPFD subroutine 
of IMSL. 
 
Initial and boundary conditions:  
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The dimensionless groups used: 

 ,    ,  ,  ,, 2
000 u

pP
u
vV

u
uU

b
yY

b
xX

ρ
=====      (6 a-e)

 
Being the Reynolds number defined based on the 
velocity of the duct entrance. 

νμ
ρ bubu 00Re == ,   being 

ρ
μν =                      (7 a-b) 

Application of dimensionless groups in the above 
equations has been the system of dimensionless 
equations in the domain 0 < y < 1 and x > 0: 
 
Continuity Equation: 
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Equation of Conservation of momentum in the X 
direction: 
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Equation of Conservation of momentum in the Y 
direction: 
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Poisson Equation: 
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The initial and boundary conditions become: 
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To properly implement GITT and improve 

computational performance, ie improving the 
convergence, it is necessary to make a 
homogenization in the boundary conditions in the 
chosen direction by using filters which means the 
separation of potential as velocity, velocity field 
development , which is a function of X and Y, and 
fully developed velocity field, which is only a 
function of Y. 

 
Filter for the velocity field: 
( ) ( ) ( )YUYXUYXU ∞

∗ += ,, ,   where:               (10 a) 
( )YXU ,∗ : is the filtered developing velocity profile to 

be evaluated; 
( )YU∞

: is the fully developed velocity profile 
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                                                (10 b) 
 
Filter to the pressure field: 
( ) ( ) ( )YXPYXPYXP F ,,, += ∗ ,  where:               (10 c) 
( )YXP ,∗ : the potential pressure field development; 
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conservation of momentum in the y direction in the 
duct wall, ie when y = 1 and has analytical solution 
given by: 
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Replacing the filters in the velocity and pressure in 
the above equations is obtained: 
 
Continuity Equation: 
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Equation of Conservation of momentum in the X 
direction: 
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Equation of Conservation of momentum in the Y 
direction: 
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Poisson Equation: 
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The initial conditions and boundary after filtering 
becomes: 
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APPLICATION OF GENERALIZED 
INTEGRAL TRANSFORM TECHNIQUE 
(GITT) 
 
Determination of the Eigenvalue Problems 
 
1. Auxiliary Problem for the Velocity Field: 
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Boundary conditions for the problem: 
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The auxiliary problem for the velocity field and 
pressure is a problem of Sturm-Liouville and has 
analytical solution given by Ozisik, (1993). 
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transcendental equations: 
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2. Auxiliary Problem for the Field Pressure: 
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0 < Y < 1           (14 a) 
 

Boundary conditions for the problem: 
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The eigenvalues, si 'β , are the roots of 
transcendental equations above: 

Normalization integral: ∫=
1

0

2 )( dYYYM ii ψ       (14 f) 

Normalized eigenfunctions: ( ) ( )
2/1

~
i

i
i M

Y
Y

ψ
ψ =   (14 g) 

The eigenfunctions, iψ , have the following 
orthogonality property for the pressure: 

⎩
⎨
⎧

=
≠

=∫ jise
jise

dYYYY ji ,1
,0

)(~)(~
1

0

ψψ              (14 f) 

 
3. Determination of the Inverse-Transform Pairs 
 
Field Velocity: 

Transform:   ∫=
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Calculation of average velocity and transverse 
velocity: 
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INTEGRAL TRANSFORMATION SYSTEM OF 
EQUATIONS 
 

The process of integral transformation of the 
system of partial differential equations formed by 
equations of momentum in x direction and Poisson in 
an ordinary differential system is derived using the 
following operators. 

First apply the operator ∫
1

0

)(~ dYYY iφ  in Eq. (11 b), 

then applies the property of orthogonality Eq. (13 h), 
the formulas of the inverse Eq. (15 b) and Eq. (16 b), 
the transverse velocity Eq. (17 c) and the auxiliary 
problem for the field velocity Eq. (13 a), then: 
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Continuing to apply to the operator ( )∫
1
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~ dYYY iψ  

in the Eq. (11 d), and replaces the orthogonality 
property Eq. (14 h), the inverse formulas of the Eq. 
(15 b) and Eq. (16 b), the transverse velocity Eq. (17 
c) and the auxiliary problem for the pressure field Eq. 
(14 a), thus: 
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The equation written in matrix form is:     
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Where the coefficients of equations (18) and (20) are: 
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( ) ( )∫=
1

0

~~ dYYYYC niin ψφ                         (21 c) 

( ) ( )dYYYY jiij φφδ ~~1

0∫=                          (21 d) 
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Applying the integral transform in the initial and 
boundary conditions: 
 
Velocity:  

( ) ( )( ) ( )dYYYUYXU ii φ~1
1

0∫ ∞−=      in X = 0              (22 a)
 

( ) 0=XU i                                 in ∞→X           (22 b)
  

Pressure:  
( ) 0=XPi                                 in X = 0              (22 c) 
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RESULTS AND DISCUSSION 
 

The program developed for solving the system of 
ordinary differential equations with the transformed 

potential was built in Fortran language and 
implemented on a micro computer with Pentium 
Dual-Core 1.87 GHz with 2 GB of RAM and run on 
Windows Vista. The code is focused on the use of the 
IMSL Library subroutine through DBVPFD, 
tolerance used was 10-4, to determine the error in the 
automatic evaluation of velocity fields and pressure. 
The tables represent the convergence of the 
longitudinal velocity at the center of the channel (Y = 
0) and average velocity for circular ducts with the 
same Reynolds number and different values of the 
contraction of scale. 

The Tables 1 e 2 represent the convergence of 
velocity and pressure longitudinal center of the 
channel (Y = 0), Tab. 3 represent the relationship 
between velocity and average velocity in the center 
Uc/Um for circular ducts with the same Reynolds 
number and different values of the contraction of 
scale. 
 
Table 1. Convergence of longitudinal velocity at the 
center of the channel U (X, 0) for Re = 20, entry 
conditions and U = 1, V = 0. Shrinkage factor of 
scale: C = 1.2 and y00 = 0.2. 

N/x 0.1000 0.2500 0,3000 0.5000 
10 0.9644 1.0065 1,0264 1.1136 
20 0.9710 1.0283 1,0535 1.1547 
30 0.9679 1.0281 1,0526 1.1431 
32 0.9777 1.0479 1,0763 1.1868 
40 0.9819 1.0582 1,0881 1.2034 
50 0.9865 1.0684 1,0996 1.2193 

50/ Eik = 0 1.0144 1.0858 1,1097 1.2092 
 

N/x 0.7000 0.7500 1.0000 
10 1.2071 1.2343 1.4130 
20 1.2594 1.2902 1.5035 
30 1.2186 1.2376 1.3553 
32 1.2990 1.3321 1.5696 
40 1.3205 1.3552 1.6101 
50 1.3402 1.3761 1.6452 

50/ Eik = 0 1.3384 1.3811 1.7180 
 
Table 2. Convergence of longitudinal pressure at the 
center of the channel U (X, 0) for Re = 20, entry 
conditions and U = 1, V = 0. Shrinkage factor of 
scale: C = 1.2 and y00 = 0.2. 

N/x 0.1000 0.2500 0.3000 0.5000 
10 0.1486 0.1495 0.1499 0.1499 
20 0.3682 0.3651 0.3606 0.3552 
30 0.5573 0.5459 0.5306 0.5126 
32 0.5899 0.5876 0.5850 0.5822 
40 0.7260 0.7143 0.7001 0.6841 
50 0.8902 0.8735 0.8540 0.8323 

50/ Eik = 0 0.8756 0.8580 0.8376 0.8150 
 

N/x 0.7000 0.7500 1.0000 
10 0.1489 0.1480 0.1468 
20 0.3344 0.3183 0.3015 
30 0.4715 0.4499 0.4282 
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32 0.5726 0.5653 0.5574 
40 0.6414 0.6151 0.5882 
50 0.7844 0.7527 0.7203 

50/ Eik = 0 0.7656 0.7330 0.6998 
 
Table 3. Convergence of the average velocity in the 
center of of the channel Uc/Um for circular duct with 
Re = 20, entry conditions and U = 1, V = 0. 
Shrinkage factor of scale: C = 1.2 and y00 = 0.2. 

N/x 0.1000 0.2500 0.3000 0.5000 
10 1.0004 1,0568 1.0818 1.1855 
20 1.0072 1.0785 1.1087 1.2264 
30 1.0034 1.0770 1.1064 1.2130 
32 1.0135 1.0977 1.1310 1.2580 
40 1.0175 1.1077 1.1064 1.2130 
50 1.0218 1.1175 1.1537 1.2899 

50/ Eik = 0 1.0504 1.1355 1.1642 1.2793 
 

N/x 0,7000 0,7500 1,0000 
10 1.2892 1.3182 1.5035 
20 1.3409 1.3734 1.5935 
30 1.2980 1.3184 1.4408 
32 1.3801 1.4149 1.6594 
40 1.2980 1.3184 1.6999 
50 1.4205 1.4581 1.7349 

50/ Eik = 0 1.4185 1.4631 1.8095 
 

The Table 4 shows that the results show good 
agreement and compared with literature data 
provided by Silva et al (2009a) and Friedman 
(1968a). The formulation was used in the cited 
references and the current function of this work is 
primitive variables for 40 terms. 
 
Table 4. Convergence of longitudinal velocity at the 
center of the channel U (X, 0) for a newtonian fluid 
flowing in a circular duct. Re = 20 and C = 1.2, entry 
conditions and U = 1 V = 0. 
Re/x Referências 0.1000 0.2500 
20 Presente Trabalho 0.9819 1.0582 
40* SILVA et al. (2009) 1.0170 1.0570 
40* FRIEDMANN (1968) 1.0080 1.0484 
 
0.3000 0.5000 0.7000 0.7500 
1.0881 1.2034 1.3205 1.3552 
1.0770 1.1800 1.3000 1.3300 
1.0740 1.1738 1.3100 1.3263 
*Reh = 2Re 
 

The figure 2 shows the behavior of the average 
velocity at different axial positoins with reynolds 
number equal to 20 and using 50 terms, watching a 
small fluctuation and the results indicate that the 
calues are very close. 
 

 
Figure 2. Average velocity of development along the 

axial position for Re = 20 and NU = NP = 50 
 
CONCLUSIONS 
 

The results obtained in solving the Navier-Stokes 
equations in terms of primitive variables, with entry 
conditions U = 1, V = 0 and P = P0, it appears that at 
the beginning of the channel values are lower than 
those of the reference but then the results are very 
close in terms of stream function formulation of 
reference works. 

In our study we used filters that were crucial for 
both the velocity and pressure, as well as homogenize 
the boundary conditions also accelerates the 
convergence. 

We conclude that the Generalized Integral 
Transform Technique (GITT) used for analysis in a 
circular duct of the laminar flow of newtonian fluid 
was considered satisfactory with a good agreement 
with data available in literature. Using the 
formulation in primitive variables for the solution of 
the Navier-Stokes and Poisson showed that the 
mathematical model is very complicated which has 
hampered its computational implementation. The 
subroutine of the IMSL Library DBVPFD was used 
to solve the system of equations and obtained results 
consistent with the references. 
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