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ABSTRACT 
 
The procedure for obtaining the particle size distribution by visual 
inspection of a sample involves stereological errors, given the cut of the 
sample. A cut particle, supposedly spherical, with radius R, will be counted 
as a circular particle with radius r, r≤R. The difference between r and R 
depends on how far from the center of the sphere the cut was performed. 
This introduces errors when the extrapolation of the properties from two to 
three dimensions during the analysis of a sample. The usual method is to 
correct the distribution by probabilistic functions, which have large errors. 
This paper presents a method to reduce the error inherent to this problem. 
The method is to compute a simulation of the preparation process in a 
sample whose structure can be described by non-penetrating spheres of 
various diameters which meet a known probability distribution function, for 
example, a log-logistic function, or even a constant function. For each 
distribution radius, a number of spheres is generated and virtually cut, 
generating a bi-dimensional (2D) distribution. The 2D curves of the spheres 
distribution obtained in this simulation are compared with that obtained by 
the experimental procedure and then the parameters of the three-
dimensional distribution function are adjusted until the 2D curves are 
similar to the experimental one using the optimization method Simulated 
Annealing for the curve-fitting. In future this method will be applied to the 
analysis of the oil reservoir rocks. 
 
Keywords: Simulated annealing, Porous media, Curve-fitting, Stereology 

 
 
NOMENCLATURE 
 
d particle diameter 
E simulated annealing Energy 
f diameter frequency 
n number of spheres 
p simulated annealing probability 
r 2D circle radius 
R 3D sphere radius 
T simulated annealing temperature 
x function adjustment coefficient 1 
 
Greek symbols  
 
α function adjustment coefficient 2 
β function adjustment coefficient 3 
δ function adjustment coefficient 4 
μ function adjustment coefficient 5 
η function adjustment coefficient 6 
σ function adjustment coefficient 7 
 
 
Subscripts  
 
t iteration counter 
 
INTRODUCTION  
 

The stereology is a interdisciplinar study field 
which aims to evaluate the three dimensional (3D) 
properties of a sample using a material bi-
dimensional (2D) information. Several geometrics 
and statistical methods are applied to achieve this 
target (DeHoff and Rhines, 1968).  

The stereology has many applications in 
biology, medical sciences, material sciences, and 
wherever it is necessary to obtain information of 
dimensions higher from samples with inferior 
dimensions. The stereology challenge is to 
understand the structural inner three-dimensional 
arrangement based on the analysis of the structure 
slices that show only two-dimensional information 
for that stereological principles take into 
consideration geometry and probability statistics 
(Mandarin-De-Lacerda, 2003). 

It is inherent, however, to the stereological 
technique, the introduction of errors during the 
extrapolation process. Garcia et. al. (2007) state that 
A major problem of sampling/slicing is the loss of 
dimension; a 3D object becomes a 2D area, a surface 
(2D) becomes a line (1D), a line (1D) becomes a 
point (0D) and a number (points 0D) is lost. A 
stereological approach provides solutions to this. 

In the last 50 years, stereological studies have 
appeared in literature more and more frequently, the 
first studies being based on pioneers (Chalkley 1943, 
Abercrombie 1946, Chalkley et al. 1949, Weibel and 
Gomez 1962, Weibel et al. 1966). The so called "new 
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stereology" was developed in the XXth century’s 
eighties, a collection of procedures turning stereology 
easier and more unbiased (Gundersen et al. 1983, 
Sterio 1984, Gundersen 1988) - in reality, the 
question of bias and stereology is still under 
discussion, but new techniques make stereology more 
consistent (Hedreen 1999, Baddeley 2001, von 
Bartheld 2002, Gardella et al. 2003, Mandarin-De-
Lacerda, 2003). 

On the other hand, the idea of estimating 
stereological parameters from optical sections within 
a thick slice was first used for counting particles in 
optical disector principle (Sterio, 1984) and in 
unbiased sampling brick rule (Howard et al., 1985), 
and then in many other stereological methods, e.g., 
nucleator (Gundersen, 1988) and planar rotator 
(Jensen and Gundersen, 1993) applied to a stack of 
optical sections and estimating the mean particle 
volume, spatial grid (Sandau, 1987), methods for 
estimating the surface area, method of vertical slices 
(Gokhale, 1990), and global spatial sampling (Larsen 
et al., 1998) used for the length estimation. 

Indeed, stereology is dynamic and full of 
perspectives for the future, new approaches to old 
questions still stimulates stereologists to test 
possibilities, an exciting example is the Simulated 
annealing technique for curve fitting.  

This research evaluated several functions as 
candidates to represent 3D particle size distributions 
which generated 2D particle size distributions 
experimentally measured through rock samples cut 
and image analysis.  

The evaluation determined the most adequate 
function for representing the particle size distribution 
and a new alternative was also proposed: not using a 
specific function, but to optimize a constant 
distribution. 

A comparison between the classical Schwartz-
Saltykov (DeHoff and Rhines, 1968), the  

 
METHODOLOGY 

 
Experimental particle size distribution 

 
The experimental procedure to obtain a particle 

size distribution was the same as Diógenes et. al. 
(2009). A typical particle diameter distribution can be 
observed in Figure (1). 

 

 
Figure 1. Typical particle size distribution for a 
sandstone sample obtained by image analysis. 

 
Particle size distribution modeling 

 
To model a particle size distribution, it was 

done some considerations:  
• each particle is represented by a 

sphere; 
• the spheres are non-penetrating; 
• the 3D particle size distribution follows 

a known unimodal distribution, as a 
log-logistic function with unknown 
parameters which shall be optimized 
by a Simulated Annealing method; 

 
These considerations aim to make the sample 

particles model as real as possible, but yet feasible to 
optimize. The unimodal function consideration 
intends to simplify the optimization procedure, even 
if the Figure (1) can be considered a bimodal 
function, it is considered that the oscillation around 
the 30μm diameter is a fluctuation. 

The functions chosen to model the particle size 
distribution were the following:  
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These functions, Log-Normal – Eq. (1), Fischer-
Tippet – Eq. (2), Shifted-Gompertz – Eq. (3) and 
Log-Logistic Eq. (4), were chosen as unimodal 
functions and due to its flexibility. The log-normal 
function, for example in Figure (2) for different 
values of σ, can have several shapes, depending on 
the variables.  
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Figure 2. Log-Normal function shapes varying the σ 
parameter. 

 
For all these functions the function parameters 

were randomized and a 3D initial particle size 
distribution was generated.  

The 2D particle size distribution was generated 
through virtual sphere slices. For each distribution 
radius, a number of 105 times the distribution spheres 
was generated. These spheres are then cut and 2D 
particles (circles) with smaller radius are then 
created, as shown in Figure (3). R is the real radius, r, 
the measured radius and h is the distance from the 
center where the slicing plane cut the particle. For 
example, a particle size distribution which has 0.01 
(1%) of its particles of radius 3, will have, for this 
radius, 1.000 spheres generated, which will be 
virtually cut and these cuts can create 2D particles 
measurements with radius 3, 2 and 1.  

 

 
Figure 3. Sphere (Particle) cut by a slicing plane 

illustrating the measurement of a r radius, smaller 
than R. 

 
Both the 2D particle size distribution created by 

a 3D particle size distribution can be observed in the 
Figure (4) for a Log-Normal distribution. As 
expected, the created 2D curve has a higher 
frequency of particles with smaller diameter than the 
3D curve. 

 

 
Figure 4. Log-normal curve and the created 2D after 

the virtual cuts. 
 

Simulated Annealing (SA) Algorithm 
 
The well-known SA technique (Yeong and 

Torquato 1998a,b; Manwart et al. 2000; Talukdar and 
Torsaeter 2002; Talukdar et al. 2002a,b; Hamzehpour 
and Sahimi 2006, Arpat and Caers 2007, Capek et al. 
2008) was used to optimize the 3D particle size 
distribution. 

Once the 3D particle size distribution is 
generated, a SA algorithm is used to adjust the curve 
parameters to fit the 2D gran size distribution. The 
sequence of steps to optimize the curve is described 
below: 

 
1. generate a 3D particle size distribution 

with random parameters; 
2. execute a virtual slicing procedure, 

generating a 2D particle size 
distribution; 

3. compare the experimental and 
generated 2D particle size 
distributions, calculating a square 
error; 

4. modify the 3D particle size distribution 
parameters and accept or reject the 
modification according to the SA 
algorithm; 

5. go to step 2 until convergence or 
iteration limit is reached. 

 
Notice that the optimization is carried on two 

levels. While the 3D curve is directly modified, the 
2D generated curve provides the square error. This 
configuration is due the experimental procedure, 
which provides a 2D particle size distribution, so it is 
necessary to compare both 2D distributions. The 
square error was calculated as the following equation: 

 

 (5) 
 
The SA algorithm used in this research is the 

classical algorithm with linear cooling schedule, 
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having . The cooling happened after 
1000 well succeeded iterations. 

The parameter modification was executed at one 
parameter per iteration. For the Log-Normal function, 
for example, if the t iteration modified the μ 
parameter, the t+1 iteration modified the σ parameter. 
The modification step was 0.01 and it could be added 
or subtracted with 50% of chance for each option. 
The convergence target was 10-3 for the square error. 
The iteration limit was 10.000 iterations without 
improvement in the energy function (square error). 

The technique cost less than one minute to 
optimize a curve using an Intel® i3 2.933GHz 
processor. 
 
RESULTS AND DISCUSSION 
 

A typical result for the same particle size 
distribution from Figure (1) can be observed in 
Figure (5). The square error for this result was 9x10-4.  

 

 
Figure 5. Processing result for the particle size 

distribution exposed in Figure (1). 
 
To test which function could model better the 

particle size distribution, a SA process was executed 
for 21 particle size distributions for all the adopted 
functions without ending the processing with the 
convergence criteria.  An average square error for all 
the samples can be observed in the Table (1). The 
function with the best result was the Log-Logistic. 
The obtained square error was 7.63E-04. This 
indicates that the best function for representing the 
particle size distribution among the analyzed 
functions is the Log-Logistic. 
 
Table 1. Average square error for all the 21 rock 
samples processed without convergence criteria stop. 

Function Average square error 
obtained 

Log Normal 1.03E-03 
Shifted Gompertz 8.56E-04 

Fischer Tippet 8.14E-04 
Log Logistic 7.63E-04 

 

To compare the proposed methodology with 
classic methods, a Log-Normal distribution with 10 
particle diameters, μ=1.3 and σ=0.4 was adopted as a 
3D particle size distribution and the virtual cut was 
executed. The resultant distributions are shown in 
Figure (6). 

 

 
Figure 6. Log-Normal curve with 10 particle 

diameters, μ=1.3 and σ=0.4 and 2D curve resultant 
from virtual cuts. 

 
The classical method of Schwarz-Saltykov 

(DeHoff and Rhines, 1968), which could be adapted 
for a curve correction, was applied to the resultant 2D 
curve and a 3D corrected particle size distribution 
was generated. The latter was compared with a 
particle size distribution generated using the proposed 
methodology through quadratic error calculated in the 
3D distribution. The corrected distributions and the 
resulting curves are disposed in the Figure (7). The 
quadratic error for the Schwarz-Saltikov method was 
2.2E-1, while the function SA was 8E-2, 
approximately 5 times smaller error. 

 

 
Figure 7. Comparison between 3D particle size 

distributions generated by the proposed methodology 
and the classical Schwarz-Saltikov method. 
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Notice that even if the error was almost 5 times 
smaller, the 3D distribution was not satisfactory. The 
function SA was not able to represent a Log-Normal 
curve with a Log-Logistic curve, even if both 
distributions are theoretically compatible. 

A proposed solution is to not use a function to 
represent the 3D particle size distribution. Instead, it 
can be used a constant function or a linear function 
and let the SA algorithm modify it freely. A 
preliminary result of a constant function modifying 
with modifying step 1E-3 is shown in Figure (8). The 
2D input was the same 2D Log-Normal as the 
previous example and the 3D result is compared with 
the previous Log-Normal. 

 

 
Figure 8. Comparison between 3D particle size 

distribution: generated by the SA-no function and 
previous Log-Normal function. 

 
There is a significant agreement between both 

functions. The quadratic error for this methodology 
was 1E-2, even smaller than the SA with a function 
representation.  This methodology was also tested 
with the gran size distribution showed in Figure (1). 
The resulting curves are exposed in Figure (9). 

 

 
Figure 9. 3D Curve generated using a SA technique 
without optimizing a specific function and its 2D cut 

comparing to a sandstone grain size distribution. 
 

An interesting fact is that the new methodology 
was able to reproduce a bimodal function and the 3D 
generated curve was also bimodal. This new 
methodology shall be further investigated.  
 
CONCLUSIONS 
 

It was proposed a new methodology to model 
particle size distributions. A SA algorithm was used 
to fit a 3D distribution with virtual cuts and 
minimizing a 2D function, comparing this latter with 
an input grain size distribution obtained 
experimentally.  

It was tested 4 distribution functions, Log-
Normal, Fischer-Tippet, Shifted-Gompertz and Log-
Logistic. The function which had best performance 
was the Log-Logistic distribution, yet, in a simple test 
of flexibility, it was clear that the performance of the 
function fitting was not adequate. 

A solution was proposed, which is to use a SA 
algorithm to fit freely a constant function. The 
preliminary tests showed that this algorithm was able 
to reproduce both a 3D Log-Normal function and a 
bimodal input function, indicating that it can be used 
to represent 3D particle size distributions determined 
from 2D particle size distributions. This solution shall 
be further investigated in future researches.  
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