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simulated annealing Energy
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number of spheres

simulated annealing probability
2D circle radius

3D sphere radius

simulated annealing temperature
function adjustment coefficient 1

Greek symbols

o function adjustment coefficient 2
B function adjustment coefficient 3
) function adjustment coefficient 4
p function adjustment coefficient 5
n function adjustment coefficient 6
o function adjustment coefficient 7
Subscripts

t iteration counter
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ABSTRACT

The procedure for obtaining the particle size distribution by visual
inspection of a sample involves stereological errors, given the cut of the
sample. A cut particle, supposedly spherical, with radius R, will be counted
as a circular particle with radius r, r<R. The difference between r and R
depends on how far from the center of the sphere the cut was performed.
This introduces errors when the extrapolation of the properties from two to
three dimensions during the analysis of a sample. The usual method is to
correct the distribution by probabilistic functions, which have large errors.
This paper presents a method to reduce the error inherent to this problem.
The method is to compute a simulation of the preparation process in a
sample whose structure can be described by non-penetrating spheres of
various diameters which meet a known probability distribution function, for
example, a log-logistic function, or even a constant function. For each
distribution radius, a number of spheres is generated and virtually cut,
generating a bi-dimensional (2D) distribution. The 2D curves of the spheres
distribution obtained in this simulation are compared with that obtained by
the experimental procedure and then the parameters of the three-
dimensional distribution function are adjusted until the 2D curves are
similar to the experimental one using the optimization method Simulated
Annealing for the curve-fitting. In future this method will be applied to the
analysis of the oil reservoir rocks.
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The stereology is a interdisciplinar study field
which aims to evaluate the three dimensional (3D)
properties of a sample using a material bi-
dimensional (2D) information. Several geometrics
and statistical methods are applied to achieve this
target (DeHoff and Rhines, 1968).

The stereology has many applications in
biology, medical sciences, material sciences, and
wherever it is necessary to obtain information of
dimensions higher from samples with inferior
dimensions. The stereology challenge is to
understand the structural inner three-dimensional
arrangement based on the analysis of the structure
slices that show only two-dimensional information
for that stereological principles take into
consideration geometry and probability statistics
(Mandarin-De-Lacerda, 2003).

It is inherent, however, to the stereological
technique, the introduction of errors during the
extrapolation process. Garcia et. al. (2007) state that
A major problem of sampling/slicing is the loss of
dimension; a 3D object becomes a 2D area, a surface
(2D) becomes a line (1D), a line (1D) becomes a
point (0OD) and a number (points OD) is lost. A
stereological approach provides solutions to this.

In the last 50 years, stereological studies have
appeared in literature more and more frequently, the
first studies being based on pioneers (Chalkley 1943,
Abercrombie 1946, Chalkley et al. 1949, Weibel and
Gomez 1962, Weibel et al. 1966). The so called "new
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stereology" was developed in the XXth century’s
eighties, a collection of procedures turning stereology
easier and more unbiased (Gundersen et al. 1983,
Sterio 1984, Gundersen 1988) - in reality, the
question of bias and stereology is still under
discussion, but new techniques make stereology more
consistent (Hedreen 1999, Baddeley 2001, von
Bartheld 2002, Gardella et al. 2003, Mandarin-De-
Lacerda, 2003).

On the other hand, the idea of estimating
stereological parameters from optical sections within
a thick slice was first used for counting particles in
optical disector principle (Sterio, 1984) and in
unbiased sampling brick rule (Howard et al., 1985),
and then in many other stereological methods, e.g.,
nucleator (Gundersen, 1988) and planar rotator
(Jensen and Gundersen, 1993) applied to a stack of
optical sections and estimating the mean particle
volume, spatial grid (Sandau, 1987), methods for
estimating the surface area, method of vertical slices
(Gokhale, 1990), and global spatial sampling (Larsen
et al., 1998) used for the length estimation.

Indeed, stereology is dynamic and full of
perspectives for the future, new approaches to old
questions still stimulates stereologists to test
possibilities, an exciting example is the Simulated
annealing technique for curve fitting.

This research evaluated several functions as
candidates to represent 3D particle size distributions
which generated 2D particle size distributions
experimentally measured through rock samples cut
and image analysis.

The evaluation determined the most adequate
function for representing the particle size distribution
and a new alternative was also proposed: not using a
specific function, but to optimize a constant
distribution.

A comparison between the classical Schwartz-
Saltykov (DeHoff and Rhines, 1968), the

METHODOLOGY
Experimental particle size distribution

The experimental procedure to obtain a particle
size distribution was the same as Didgenes et. al.
(2009). A typical particle diameter distribution can be
observed in Figure (1).
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Figure 1. Typical particle size distribution for a
sandstone sample obtained by image analysis.
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Particle size distribution modeling

To model a particle size distribution, it was
done some considerations:

e cach particle is represented by a
sphere;

e the spheres are non-penetrating;

e the 3D particle size distribution follows
a known unimodal distribution, as a
log-logistic function with unknown
parameters which shall be optimized
by a Simulated Annealing method;

These considerations aim to make the sample
particles model as real as possible, but yet feasible to
optimize. The unimodal function consideration
intends to simplify the optimization procedure, even
if the Figure (1) can be considered a bimodal
function, it is considered that the oscillation around
the 30pm diameter is a fluctuation.

The functions chosen to model the particle size
distribution were the following:
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These functions, Log-Normal — Eq. (1), Fischer-
Tippet — Eq. (2), Shifted-Gompertz — Eq. (3) and
Log-Logistic Eq. (4), were chosen as unimodal
functions and due to its flexibility. The log-normal
function, for example in Figure (2) for different
values of o, can have several shapes, depending on
the variables.
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Figure 2. Log-Normal function shapes varying the ¢
parameter.

For all these functions the function parameters
were randomized and a 3D initial particle size
distribution was generated.

The 2D particle size distribution was generated
through virtual sphere slices. For each distribution
radius, a number of 10° times the distribution spheres
was generated. These spheres are then cut and 2D
particles (circles) with smaller radius are then
created, as shown in Figure (3). R is the real radius, r,
the measured radius and h is the distance from the
center where the slicing plane cut the particle. For
example, a particle size distribution which has 0.01
(1%) of its particles of radius 3, will have, for this
radius, 1.000 spheres generated, which will be
virtually cut and these cuts can create 2D particles
measurements with radius 3, 2 and 1.

shicing plane

Figure 3. Sphere (Particle) cut by a slicing plane
illustrating the measurement of a r radius, smaller
than R.

Both the 2D particle size distribution created by
a 3D particle size distribution can be observed in the
Figure (4) for a Log-Normal distribution. As
expected, the created 2D curve has a higher
frequency of particles with smaller diameter than the
3D curve.
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Figure 4. Log-normal curve and the created 2D after
the virtual cuts.

Simulated Annealing (SA) Algorithm

The well-known SA technique (Yeong and
Torquato 1998a,b; Manwart et al. 2000; Talukdar and
Torsaeter 2002; Talukdar et al. 2002a,b; Hamzehpour
and Sahimi 2006, Arpat and Caers 2007, Capek et al.
2008) was used to optimize the 3D particle size
distribution.

Once the 3D particle size distribution is
generated, a SA algorithm is used to adjust the curve
parameters to fit the 2D gran size distribution. The
sequence of steps to optimize the curve is described
below:

1. generate a 3D particle size distribution
with random parameters;

2. execute a virtual slicing procedure,
generating a 2D  particle  size
distribution;

3. compare the
generated 2D
distributions, calculating a
error;

4. modify the 3D particle size distribution
parameters and accept or reject the
modification according to the SA
algorithm;

5. go to step 2 until convergence or
iteration limit is reached.

experimental  and
particle size
square

Notice that the optimization is carried on two
levels. While the 3D curve is directly modified, the
2D generated curve provides the square error. This
configuration is due the experimental procedure,
which provides a 2D particle size distribution, so it is
necessary to compare both 2D distributions. The
square error was calculated as the following equation:

E= |Z?-Lf':7‘ﬂ:.?_gsnsrsrsd - f':f‘ﬂ:.?_ smsrhsnrsir
(5)

The SA algorithm used in this research is the
classical algorithm with linear cooling schedule,
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having Tp4q = 099T;. The cooling happened after
1000 well succeeded iterations.

The parameter modification was executed at one
parameter per iteration. For the Log-Normal function,
for example, if the t iteration modified the p
parameter, the t+1 iteration modified the ¢ parameter.
The modification step was 0.01 and it could be added
or subtracted with 50% of chance for each option.
The convergence target was 10~ for the square error.
The iteration limit was 10.000 iterations without
improvement in the energy function (square error).

The technique cost less than one minute to
optimize a curve using an Intel® i3 2.933GHz
processor.

RESULTS AND DISCUSSION

A typical result for the same particle size
distribution from Figure (1) can be observed in
Figure (5). The square error for this result was 9x10™.
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Figure 5. Processing result for the particle size
distribution exposed in Figure (1).

To test which function could model better the
particle size distribution, a SA process was executed
for 21 particle size distributions for all the adopted
functions without ending the processing with the
convergence criteria. An average square error for all
the samples can be observed in the Table (1). The
function with the best result was the Log-Logistic.
The obtained square error was 7.63E-04. This
indicates that the best function for representing the
particle size distribution among the analyzed
functions is the Log-Logistic.

Table 1. Average square error for all the 21 rock
samples processed without convergence criteria stop.

Function Average square error
obtained
Log Normal 1.03E-03
Shifted Gompertz 8.56E-04
Fischer Tippet 8.14E-04
Log Logistic 7.63E-04
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To compare the proposed methodology with
classic methods, a Log-Normal distribution with 10
particle diameters, p=1.3 and 0=0.4 was adopted as a
3D particle size distribution and the virtual cut was
executed. The resultant distributions are shown in
Figure (6).
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Figure 6. Log-Normal curve with 10 particle
diameters, u=1.3 and 6=0.4 and 2D curve resultant
from virtual cuts.

The classical method of Schwarz-Saltykov
(DeHoff and Rhines, 1968), which could be adapted
for a curve correction, was applied to the resultant 2D
curve and a 3D corrected particle size distribution
was generated. The latter was compared with a
particle size distribution generated using the proposed
methodology through quadratic error calculated in the
3D distribution. The corrected distributions and the
resulting curves are disposed in the Figure (7). The
quadratic error for the Schwarz-Saltikov method was
2.2E-1, while the function SA was 8E-2,
approximately 5 times smaller error.
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Figure 7. Comparison between 3D particle size
distributions generated by the proposed methodology
and the classical Schwarz-Saltikov method.
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Notice that even if the error was almost 5 times
smaller, the 3D distribution was not satisfactory. The
function SA was not able to represent a Log-Normal
curve with a Log-Logistic curve, even if both
distributions are theoretically compatible.

A proposed solution is to not use a function to
represent the 3D particle size distribution. Instead, it
can be used a constant function or a linear function
and let the SA algorithm modify it freely. A
preliminary result of a constant function modifying
with modifying step 1E-3 is shown in Figure (8). The
2D input was the same 2D Log-Normal as the
previous example and the 3D result is compared with
the previous Log-Normal.
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Figure 8. Comparison between 3D particle size
distribution: generated by the SA-no function and
previous Log-Normal function.

There is a significant agreement between both
functions. The quadratic error for this methodology
was 1E-2, even smaller than the SA with a function
representation. This methodology was also tested
with the gran size distribution showed in Figure (1).
The resulting curves are exposed in Figure (9).
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Figure 9. 3D Curve generated using a SA technique
without optimizing a specific function and its 2D cut
comparing to a sandstone grain size distribution.
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An interesting fact is that the new methodology
was able to reproduce a bimodal function and the 3D
generated curve was also bimodal. This new
methodology shall be further investigated.

CONCLUSIONS

It was proposed a new methodology to model
particle size distributions. A SA algorithm was used
to fit a 3D distribution with virtual cuts and
minimizing a 2D function, comparing this latter with
an input grain size distribution obtained
experimentally.

It was tested 4 distribution functions, Log-
Normal, Fischer-Tippet, Shifted-Gompertz and Log-
Logistic. The function which had best performance
was the Log-Logistic distribution, yet, in a simple test
of flexibility, it was clear that the performance of the
function fitting was not adequate.

A solution was proposed, which is to use a SA
algorithm to fit freely a constant function. The
preliminary tests showed that this algorithm was able
to reproduce both a 3D Log-Normal function and a
bimodal input function, indicating that it can be used
to represent 3D particle size distributions determined
from 2D particle size distributions. This solution shall
be further investigated in future researches.
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