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ABSTRACT  
 

This paperaims to determine the velocity profile, in transient state, for a 

parallel incompressible flow known as Couette flow. The Navier-Stokes 

equations were applied upon this flow. Analytical solutions, based in Fourier 

series and integral transforms, were obtained for the one-dimensional 

transient Couette flow, taking into account constant and time-dependent 

pressure gradients acting on the fluid since the same instant when the plate 

starts it´s movement. Taking advantage of the orthogonality and 

superposition properties solutions were foundfor both considered cases. 

Considering a time-dependent pressure gradient, it was found a general 

solution for the Couette flow for a particular time function. It was found that 

the solution for a time-dependent pressure gradient includes the solutions for 

a zero pressure gradient and for a constant pressure gradient.  
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NOMENCLATURE 
 

b constant pressure gradient, Pa/m 

Dn Fourier series constant, m/s 

L parallel plates distance, m 

Nn Fourier series normalization integral, m 

P pressure, Pa 

t time, s 

 fluid velocity in x direction, m/s 

U upper plate velocity, m/s 

x, y, z orthogonal components 

 
Greek symbols 

 

ρ density, kg/m
3
 

υ kinematic viscosity, m2/s 

 homogeneous partial differential equation  

 characteristic function 

� constant for separation of variables 

 

Subscripts  

 
n Fourier series term number  

p steady state velocity profile component 

t transient state velocity profile component 

 

 

INTRODUCTION 
 

Couette flow between parallel plates 

 
Consider a Newtonian fluid with density ρ and 

kinematic viscosity � bounded by two infinite 

parallel plates separated by a distance L, as shown in 

figure 1. The liquid and the plates are initially at rest. 

At time   the upper plate starts moving with 

steady velocity U while the lower plate is 

heldstationary. At this same instant a pressure 

gradient, acting in the direction of flow, appears. 
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Figure 1. Couette flow between parallel infinite 

plates. 

 

The problem is to determine the velocity profile 

in transient state for this flow. Shames (1992) 

provides a solution for the steady state velocity 

profile and pressure gradient he reached the solution 

by using separation of variables which is applicable 

in the steady state case. A more complex solution 

involving the transient state Couette flow is given by 

Papanastasiou et al. (2000), this solution is achieved 

by considering zero pressure gradient, in this case 

separation of variables and Fourier series were used, 

the same transient state Couette flow was solved by 

Graebel(2007) by writing the velocity in 

dimensionless form as a function of density, time, 

viscosity, space coordinate and plate velocity, and in 

doing so transforming the partial differential equation 

into an ordinary differential equation, again in this 

solution the pressure gradient was taken to be zero. 

This work aims to find velocity profiles for the cases 

of constant pressure gradient and time-dependent 

pressure gradient, the solutions for the two 

considered cases can be found by applying Fourier 

series and Fourier integral transforms both techniques 

have been successfully applied to solve transient heat 

conduction problems by Kakaç and Yener (1985). 

The idea of a time-dependent pressure gradient 

was proposed by Riley and Drazin (2006) as a mean 

to find general solutions for one-dimensional flows. 

 

Differential equation, initial and boundary 

conditions 

 
To model this problem we use the Navier-

Stokes equations. Assuming an incompressible 

Newtonian one-dimensional flow in the x direction 

we obtain the following differential equation. 
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For the given problem, the partial derivative of  

the pressure in the y direction is zero; therefor the 

most general pressure function must have the 

following form. 
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Tanking the pressure partial derivative in the x 

direction Eq. (1) becomes. 
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For the initial condition we assume that there is 

no flow before t = 0+and for the boundary conditions 

we assume the non-slip condition which implies that 

the fluid in contact with the plates has the same 

velocity as them.  
 

0),0( =tu      (4) 

 

UtLu =),(      (5) 
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As can be seen the second condition, Eq. (5), is 

a non-homogeneous boundary condition. We will 

deal with this non-homogeneity using the 

superposition property as follows. 
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Here the first term of the left-hand side holds for 

the steady state component of the velocity profile and 

the second term for the transient state component. 
 

Pressure Gradient 

 
We will find the velocity profiles for a constant 

and a time-dependent pressure gradient represented 
by Eq. (8) and Eq. (9) respectively. 
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The b and J factors are both constants. The main 

idea for representing the pressure gradient as it was 

represented in Eq. (9) is because we expect that the 

time-dependent component of the pressure gradient 
will eventually vanish and only the constant 

component will remain. We will further discuss this 

function´s factors once we have solved the partial 

differential equation Eq. (1). 

 

Steadystate component for constant pressure 

gradient. 

 
For the steady state component we have the 

following differential equation. 
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L x 
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Applying a constant pressure gradient and using 

Eq. (4) and Eq. (5) as the boundary conditions this 

differential equation yields the steady state 

component of the velocity profile. 
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Transient state component for constant pressure 
gradient. 

 

Replacing Eq. (7) and (11) into Eq. (1), Eq. (4), 

Eq. (5) and Eq. (6) we obtain the differential 

equation, initial and boundary conditions for the 

transient state component of the velocity profile. 
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We have now a homogeneous differential 

equation with homogeneous initial and boundary 

conditions which can be solved using Fourier series. 

Eq. (12) can be solved applying separation of 

variables, where we havechosen an adequate constant 

to equal the two resulting differential equations. 
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Eq. (16) has the following general solution. 
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The constant B is found to be zero while it is 

impossible to express constants A and C using simple 

functions; however they can be represented using 

Fourier series. The characteristic function for this 

system is. 
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The normalization integral and the constants for 

the Fourier series solution are determined by the 

following equations. 
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The transient state component is then given by  
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Velocity profile for Constant Pressure Gradient. 

 
Replacing Eq. (11) and Eq. (21) into Eq. (7) we 

obtain the velocity profile for the Couette flow in 

transient state and with a constant pressure gradient 
applied. Afterwards we have made the necessary 

arrangements to obtain this profile as a function of 

dimensionless factors. The function obtained is 

shown in Eq. (22).  
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Steady state component for time-dependent 

pressure gradient. 

 
In this case we need to solve the following 

differential equation. 
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This is practically the same as Eq. (10), but here 

the constant pressure gradient is being multiplied by 
J. The boundary conditions are the same we used to 

solve Eq. (10) the resulting steady state component is. 
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Transient state component for time-dependent 

pressure gradient. 

 
Replacing Eq. (9) and Eq. (24) into Eq. (1),   

Eq. (4), Eq. (5) and Eq. (6) we obtain the differential 
equation, initial and boundary conditions for the 

transient state component of the velocity profile. 
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This system can be solved applying integral 

transforms; this procedure aim to vanish the 

derivatives in the y direction from Eq. (25). We apply 

the following transform. 
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This transform´s inversion formula is. 
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The factor ),( yk nλ is known as the kernel of 

the transform and it is determined by solving the 

system formed by Eq. (25), Eq. (26), Eq. (27) and   

Eq. (28) without the non-homogeneous terms, this 
procedure will yield the same characteristic function 

and normalization integral as the ones considered in 

Eq. (18) and (19) respectively. For the kernel we 

have 
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The next step is to multiply Eq. (1) by 

),( yk nλ and then integrate from zero to L. 
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For the secondterm on left-hand side of Eq. (32) 

the following relation can be proved 
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Integrating by parts the first term on the left-

hand side of Eq. (32) and applying the boundary 
conditions we get 
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Integrating by parts Eq. (35) we obtain 
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Where 
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The right-hand side term of Eq. (32) can be 

expressedas 
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This transform yields 
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The two terms of the right-hand side in Eq. (39) 

are multiplying each other. For the following step we 

need to consider the next exponential factor 
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Replacing Eq. (34), Eq. (36), Eq. (37) and Eq. 

(39) in Eq. (32), then multiplying by Eq. (40) and 

finally integrating from zero to t we get 
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As can be seen the exponential terms in the 

right-hand side of Eq. (41) will cancel each other, it 

must also be noted that 
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Using Eq. (42) to solve the left-hand side 

integral in Eq. (41) and then solving for tu  we get 
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Here )0,( ntu λ  represents the integral transform 

of the initial condition, so we have 
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Replacing Eq. (44) into Eq. (43) we obtain the 

following function for the integral transform of 

thetransient state component of the velocity profile  
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Now using the inversion formula we obtain the 

transient velocity profile 
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Here the sin and exponential terms are 

multiplying each other and then multiply the resulting 

term of the operations inside the claps. 

Finally the total velocity profile can be 

expressed by replacing Eq. (24) and Eq. (46) into Eq. 

(7) 
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Dimensionless parameters 

 
Inspecting the velocity profiles, Eq. (22) and 

Eq. (47), we find four dimensionless parameters, 

among these the most important are the following. 
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The first one represents the relation between the 

pressure gradient and plate distance with the 

kinematic viscosity, density and plate velocity. The 

second dimensionless parameter represents the 

influence of the kinematic viscosity and plate 

distance with the time needed for the fluid to achieve 

steady state flow. 

 

RESULTS AND DISCUSIONS 

 
In this section we present some plots for the 

velocity profile in function of the two dimensionless 

parameters. 

 

 

 
 

Figure 2.Velocity profile for constant 

pressuregradient. 

20
2

−=
υρU

bL
and

2
L

tυ
from 0.0001 to 1 

 
Figures 2 and 3 were both plotted using Eq. 

(22). Figure 2 represents a decreasing pressure on the 

direction of flow while figure 3 represents an adverse 

pressure gradient or, in other words, an increasing 

pressure gradient in the direction of flow. On both 

cases we can observe that as the time passes the 

profile tends to become quasi parabolic. Both figures 

show a unitary horizontal displacement respect to the 

origin, this is due to the non-slip condition statement. 

 

At greater values of Eq. (48) the influence of 

plate velocity upon the total velocity profile will be 

negligible. For small values of Eq. (49) the Fourier 

series require at least 50 terms to converge, as        

Eq. (49) value approaches to 1 less than 10 terms will 

be required. 

 

 
 

Figure 3.Velocity profile for constant 

pressuregradient. 
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Figure 4.Velocity profile for constant pressure 

gradient. 
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Figure 5.Velocity profile for constant pressure 

gradient. 
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Figure 4 and figure 5 show a decreasing 

pressure on the flow direction and an adverse 

pressure gradient, bothwere plotted using Eq. (47). 
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Inspecting the time-dependent function Eq. (9) it can 

be seen that the time-dependent component of the 

pressure gradient will decrease and eventually vanish 

as the time passes, it can also be noted that for J=1 

Eq. (47) is equal to Eq. (22). It is now obvious that 

the time-dependent function for the pressure gradient 

was chosen so it would tend to constant pressure 

gradient as time passes. 

When the pressure gradient is small we expect 

the velocity profile, determined by Eq. (47) to 

approximate the velocity profile for zero pressure 

gradient, this behavior is shown in figure 6 and figure 

7. Figure 8 was plotted using Eq. (47) and it shows 

the velocity profile when the pressure gradient is 

zero. 

Comparing figure 2 with figure 4 and figure 3 

with figure 5, we note that the main differences 

between these figures are the maximumvelocity value 

and, when the velocity profilebecomes quasi-

parabolic, the perpendicular distance from the 

symmetry axis to any point on the parabola. 

 

 

 
 

Figure 6.Velocity profile for constant pressure 

gradient. 
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Figure 7.Velocity profile for constant pressure 

gradient. 
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Figure 8. Velocity profilefor Zero pressure gradient. 
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CONCLUSIONS 
 

On the analysisof one dimensional transient 

Couette flow, consideration of a time-dependent 

pressure gradient makes possible to obtain 

generalsolutions for the velocity profile. In this work 

was considered a specific time-dependent function 

which led us to a solution that contains the solutions 

for zero pressure gradient and constant pressure 

gradient, as was expected. 

 

Different time-dependent functions can be used 

and the same procedure applied in order to find 

different solutions, although it should be noted that 

only the last term inside the sum of Eq. (47) would 

substantially change. 

 

 Is important to point the fact that the velocity 

profiles obtained Eq. (22) and Eq. (47), are both 

dimensionless and depend on three parameters which 

are also dimensionless. Therefore, the velocity 

profiles found can be applied to any incompressible 

fluid confined between two plates separated by an 

arbitrary distance and for an arbitrary plate velocity 

as well. 
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