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ABSTRACT 
 
A numerical simulation of the interaction between a regular wave and an 
immersed horizontal cylinder, whose axis is 3-radius deep, perpendicular to 
the direction of the wave propagation, is presented in this paper. The 
numerical model uses the semi-implicit two-step Taylor- Galerkin method 
to integrate Navier-Stokes equations in time and space. Arbitrary 
lagrangean-eulerian formulation is employed to describe the free surface 
movement. The free surface elevations near the cylinder and in some gauges 
along the channel, as well the spectrum distribution, are compared with 
experimental ones, and good agreement is obtained. The analysis shows that 
the viscous effects only affect the area that is very close to the cylinder. 
 
Keywords: numerical simulations, finite element method, free surface, 
wave propagation, submerged cylinder 

 
 
NOMENCLATURE 
 
a wave amplitude, m 
aij influence coefficients, m-4 
c sound speed, m/s 
dij distance between points i and j, m 
f frequency wave, Hz 
gi gravity acceleration components, m/s2 
hE characteristic element size, m 
L wavelength, m 
N linear shape function 
p pressure, Pa 
PE constant shape function 
r cylinder ray, m 
t time, s 
T period, s 
u horizontal velocity component, m/s 
v vertical velocity component, m/s 
vi fluid velocity components, m/s 
wi mesh velocity components, m/s 
xc horizontal coordinate of the cylinder center, m 
xi coordinates, m 
 
Greek symbols 
 
β safety factor 
Δt time step, s 
η free surface elevation, m 
ρ density, kg/m3 
τij viscous stress tensor, Pa 
 
Superscripts 
 
n instant t, s 
n+1/2 instant t+Δt/2, s 
n+1 instant t+Δt, s 

 

INTRODUCTION 
 

The interaction among regular waves and 
submerged circular cylinders, with their axes parallel 
to the crests of the incident waves, has been studied 
analytically, experimentally and numerically by 
many authors.  The presence of an obstacle near the 
free surface may cause reflected and modified 
transmitted waves. These phenomena depend on the 
characteristics of the incident wave, the obstacle 
geometry and the depth. Many studies of this 
interaction are available to provide a good example 
to validate numerical codes. 

The first study was developed by Dean (1948) 
and, after that, by Ursell (1950). Considering a linear 
behavior, these authors showed that (a) the cylinder 
does not reflect any energy, regardless of its ray, 
depth or wave frequency; (b) the transmitted waves 
are out of phase, but their amplitudes are the same. 
Chaplin (2001) studied the nonlinear forces and 
characteristics of the reflected and transmitted waves 
experimentally. He showed that the reflection is 
negligible up to the third order. This author and 
Schonberg and Chaplin (2003) presented many 
experimental and numerical studies concerning the 
nonlinear interaction among waves and submerged 
cylinders. A detailed review of analyses for this case 
can be found in Paixão Conde et al. (2007). 

The objective of this paper is to validate the 
code developed by Teixeira (2001) in the interaction 
between a submerged body and a wave in a 
horizontal channel. Numerical results are compared 
with experimental ones in a wave over a submerged 
cylinder. 

The model includes all nonlinear terms, 
different from the depth-integrated models, limited to 
smooth nonlinearities, although their computational 
cost is low. Therefore, the wave transformation due 
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to a submerged obstacle can be accurately simulated 
in domains with relative little dimensions. 

The code (Teixeira, 2001) integrates the full 
Navier-Stokes equations. A semi-implicit two-step 
Taylor-Galerkin method is used to simulate 3D 
incompressible flows with free surface. An arbitrary 
lagrangean-eulerian formulation (ALE) is used to 
enable relative movements among bodies and 
surfaces and the free surface movements. 
 
NUMERICAL MODEL 
 
Semi-implicit two-step Taylor-Galerkin method 
 

Basically, the algorithm consists of the 
following steps (Teixeira and Awruch, 2000): 

(a) Calculate non-corrected velocity at Δt/2, 
where the pressure term is at t instant, according to 
Eq. (1). 
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where ρ is the density, p is the pressure, gi are the 
gravity acceleration components, vi are the velocity 
components, wi are the velocity components of the 
reference system and τij is the viscous stress tensor 

viiU ρ= , ( ) Uf ijijij vvv == ρ  (i,j = 1,2,3). 

(b) Update the pressure p at t+Δt, given by the 
Poisson equation: 
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where ppp nn −=Δ +1 and i = 1,2,3. 
(c) Correct the velocity at t+Δt/2, adding the 

pressure variation term from t to t+Δt/2, according to 
the equation: 
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(d) Calculate the velocity at t+Δt using variables 
updated in the previous steps as follows: 
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Space discretization 
 

The classical Galerkin weighted residual 
method is applied to the space discretization. In the 
variables at t+Δt/2 instant, a constant shape function 
PE is used, and in the variables at t and t+Δt, a linear 
shape function N is employed. By applying this 

procedure to Eq. (1), (2), (3) and (4), the following 
expressions in the matrix form are obtained (Teixeira 
and Awruch, 2001): 
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where variables with upper bars at n and n+1 instants 
indicate nodal values, while those at n+1/2 instant 
represent constant values in the element. The 
matrices and vectors from Eq. (5) to (8) are volume 
and surface integrals that can be seen in detail in 
Teixeira and Awruch (2000). 

Equation (6) is solved using the conjugated 
gradient method with diagonal pre-conditioning 
(Argyris et al., 1985). In Eq. (8), the consistent mass 
matrix is substituted by the lumped mass matrix, and 
then this equation is solved iteratively. 

The scheme is conditionally stable and the local 
stability condition for the element E is given by  

 uht EE β≤Δ                                 (9) 

where hE is the characteristic element size, β is the 
safety factor and u is the fluid velocity.  
 
Mesh movement 
 

 The free surface is the interface between two 
fluids, water and air, where atmospheric pressure is 
considered constant (generally the reference value is 
null). In this interface, the kinematic free surface 
boundary condition (KFSBC) is imposed. By using 
the ALE formulation, it is expressed as: 
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where η is the free surface elevation, v)(
3

s  is the 

vertical fluid velocity component and v)(s
i  (i=1,2) 

are the horizontal fluid velocity components in the 
free surface. The eulerian formulation is used in the 
x1 and x2 directions (horizontal plane) while the ALE 
formulation is employed in the x3 or vertical 
direction. 

The time discretization of KFSBC is carried out 
in the same way as the one for the momentum 
equations as presented before. After applying 
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expansion in Taylor series, the expressions for η at 
n+1/2 (first step) and n+1 (second step) instants are 
obtained: 
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Linear triangular elements coincident with the 
face of the tetrahedral elements on the free surface 
are used to the space discretization by applying the 
Galerkin method. 

The mesh velocity vertical component w3 is 
computed to diminish element distortions, keeping 
prescribed velocities on moving (free surface) and 
stationary (bottom) boundary surfaces. The mesh 
movement algorithm adopted in this paper uses a 
smoothing procedure for the velocities based on 
these boundary surfaces. The updating of the mesh 
velocity at point i of the finite element domain is 
based on the mesh velocity of the points j that belong 
to the boundary surfaces, and is expressed in the 
following way (Teixeira and Awruch, 2005): 
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where ns is the total number of points belonging to 
the boundary surfaces and aij are the influence 
coefficients between the point i inside the domain 
and the point j on the boundary surface given by the 
following expression: 
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with dij being the distance between points i and j. In 
other words, aij represents the weight that every point 
j on the boundary surface has on the value of the 
mesh velocity at points i inside the domain. When dij 
is low, aij has a high value, favouring the influence of 
points i, located closer to the boundary surface 
containing point j. 

The free surface elevation, the mesh velocity 
and the vertical coordinate are updated according to 
the following steps: 

(1) Calculate η n+1/2 and U
n
i

~ 2/1+ , Eq. (11) and  
Eq. (1), respectively. 
(2) Calculate pΔ , Eq. (2). 

(3) Calculate U n
i

2/1+ , Eq. (3). 
(4) Calculate U n

i
1+ , Eq. (4). 

(5) Calculate η n+1, Eq. (12). 
(6) Update the mesh velocity w3 and the vertical 
coordinate x3: 

(6.1) Calculate the mesh velocity in the free 
surface at t + Δt: w)( 1

3
S n+  = ( ) tnn Δ−+ ηη 1 . 

(6.2) Calculate the mesh velocity in the 
interior of the domain at n+1 e n+1/2 by using 

Eq. (13) and 
2

)w  w(
  w 3

1
32/1

3

nn
n +

=
+

+ , respectively. 

(6.3) Update the vertical coordinates in the 

interior of the domain: 
2

 w    33
2/1

3
t

xx nnn Δ
+=+ , 

t w    2/1
33

1
3 Δ+= ++ nnn xx . 

Wave generation and radiation conditions 

The free surface elevation and the fluid velocity 
components are imposed to each time step directly, 
considering the linear wave equations. 

The Flather’s radiation condition (Flather, 
1976) is used to deal with open boundaries. In this 
method, the Sommerfeld condition to free surface 
elevation is combined with one-dimensional version 
of the continuity equation. Then, the normal velocity 
of the boundary can be expressed by: 

 
h
g

u η=                             (15) 

where g is the gravity acceleration and h is the depth.       
 
STUDY CASE 
 

This case considers a 5.2.m long and 0.425.m 
deep channel with a submerged cylinder of 
r.=.0.025m positioned 1.60.m from the wave 
generator (Fig. 1). The cylinder center is 0.075m (3r) 
from the free surface. The frequency wave is 
f.=.1.4.Hz; its amplitude is a.= 0.0119 m and its 
wavelength is L=0.796 m, characterizing a deep 
water case.  

 

 
Figure 1. Geometry of the horizontal cylinder case. 

Table 1 shows the period, the frequency and the 
wavelength for the fundamental frequency and its 
2nd, 3rd and 4th harmonics, according to the linear 
wave theory. 

Table 1. Period, frequency and wavelength of the 
fundamental frequency and its 2nd, 3rd and 4th 
harmonics. 

 Fundamental 2nd 
harmonic 

3rd 
harmonic 

4th 
harmonic

T (s) 0.7143 0.3571 0.2381 0.1786 
 f(Hz) 1.4 2.8 4.2 5.6 
L(m) 0.796 0.199 0.0885 0.0498 
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The mesh, with 173900 nodes and 515623 
elements, has one layer of elements in the transversal 
direction. The average element size on the cylinder 
boundary is 0.0015.m (105 divisions in the 
circumference). The element size diminishes from 
the ends to the region near the cylinder and from the 
bottom to the free surface. The element sizes on the 
end where the wave generator is located and on the 
opposite end are 0.015 m (53 points per fundamental 
wavelength) and 0.02 m (40 points per fundamental 
wavelength), respectively. On the bottom, 0.0015m is 
also used.  

The initial conditions are: null velocity 
components in all domain and hydrostatic pressure 
(null on the free surface). The wave is generated by 
imposing the surface elevation and the velocity 
components. The non-slip condition is imposed to the 
bottom and to the cylinder wall. The time step is 
0.0002s, which satisfies the Courant condition. 
 
RESULTS AND DISCUSSIONS 
 

Figure 2 shows the free surface elevation 
obtained by the code and experimental tests, where 
xc is the horizontal coordinate of the cylinder center. 
In general, there is agreement between numerical and 
experimental results (Paixão Conde, 2007). We can 
notice the free surface disturbance downstream the 
cylinder. When (x-xc)/L is above 1.7, the numerical 
results are smoother than the experimental ones, 
showing the necessity of a refinement in this region. 
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Figure 2. Free surface elevation (.Numerical ⎯ ; 

Experimental ■). 

Figure 3 shows a comparison among numerical 
and experimental results in terms of free surface 
elevation on four gauges located at (x-xc)/L equal to  
-0.503, 0.0692, 0.509 and 1.264 (there is only a 
numerical result on the first gauge). We can observe 
the similarity among numerical and experimental 
results. 
 Figure 4 shows the streamlines and the velocity 
modulus distribution at the same instant used in Fig. 
2. Recirculation and separation cannot be observed at 
downstream. Due to the oscillatory flow behavior, 
there is no time for recirculation productions. We can 
notice the flow acceleration near the cylinder due to 
the boundary layer effect. The viscous effects have 
only local influence, without modifying the velocity 
field far from it. 
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Figure 3. Free surface elevations on the gauges 

located at (x-xc)/L equal to -0.503, 0.0692, 0.509 and 
1.264 (Numerical ⎯ ; Experimental ●). 

 
 In Figures 5 and 6, velocity component profiles, u 
and v, on the same gauge positions are presented. 
These profiles were constructed at the same instant as 
that used in Fig. 2. According to the linear theory, the 
maximum value for both horizontal and vertical 
components is equal to 0.105 m/s. For horizontal 
components, these values occur on the crest and the 
trough, while for vertical ones, these values occur on 
upward and downward zero-crossings. When one 
component is the maximum, another is null, because 
the phase difference is 90 degrees. 
 Gauge 1 ((x-xc)/L = -0.503) is located upstream, 
near the wave crest; no significant disturbance in u 
and v profiles is observed. The horizontal velocity 
component is positive and its maximum value is 
similar to the theoretical value in the crest. The wave 
trough passes by gauge 2; the vertical velocity 
component presents low values and the horizontal 
velocity component has negative values, reaching the 
maximum absolute value close to the theoretical ones 
(0.105 m/s). Gauge 3 is located near the first crest 
upstream, resulting in high horizontal component 
values. Finally, gauge 4 is on a region between the 
trough and upward zero-crossing. Both component 
profiles are negative and the vertical component 

Gauge 1 

Gauge 2 

Gauge 3 

Gauge 4 
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magnitude shows how close the gauge is to upward 
zero-crossing. 

 

Figure 4. Streamlines and velocity modulus at the 
instant in which the free-surface elevation was 

captured (Fig. 2). 

 The non-slip boundary condition on the bottom 
does not change the general behavior of the wave 
propagation, because this case is considered a deep 
water one. 
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Figure 5. Horizontal velocity components at the same 

instant used in Fig. 2 along the depth on gauges 
located at (x-xc)/L equal to -0.503, 0.0692, 0.509 and 

1.264. 
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Figure 6. Vertical velocity components at the same 
instant used in Fig. 2 along the depth on gauges 
located at (x-xc)/L equal to -0.503, 0.0692, 0.509 and 
1.264. 

Figure 7 shows the frequency spectra for these four 
gauges distributed along the channel. In all cases, the 
energy is concentrated on the fundamental frequency 
and its harmonic waves. On gauge 1, the fundamental 
frequency presents most energy and the second 
harmonic shows a little value. On gauges 2 and 4, 
located upstream, significant energy up to the third 
harmonic appears, similar to the experimental results.  
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Figure 7. Frequency spectra on gauges located at    
(x-xc)/L equal to -0.503, 0.0692, 0.509 e 1.264. 

 
 
CONCLUSIONS 
 

This paper has presented a validation of a code 
based on the fractioned semi-implicit two-step 
Taylor-Galerkin method to wave propagation along a 
channel with submerged obstacle. A horizontal 
cylinder case was studied and the numerical results 
were compared with experimental ones. 

The free surface elevations and the velocity 
profiles obtained by the code were similar to 
experimental ones. The numerical results presented a 
smooth free surface deformation downstream, 
possibly because of the lack of refinement that 
caused numerical diffusion. In this case, the viscous 
effects influenced the flow behavior locally whereas 
the viscosity was not important far from the cylinder. 
The non-slip condition on the bottom did not modify 
the wave propagation significantly because it is a 
deep water case. 
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