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ABSTRACT

This work studies the flow of a mixture of two fluids — a Newtonian fluid and
a pollutant — through a rigid cylindrical shell porous matrix. Aiming to build a
preliminary local model for the flow of a Newtonian fluid containing a pollutant
through a wellbore, a mixture theory approach is employed. The mixture consists
of four overlapping continuous constituents: one solid (porous medium), one
liquid (Newtonian fluid), the pollutant (solid, liquid or gas) and an inert gas
included to account for the compressibility of the mixture as a whole. Assuming
the flow on radial direction only, a set of three nonlinear partial differential
equations describes the problem. Combining Glimm’s scheme with an operator
splitting technique to account for the non-homogeneous part of the hyperbolic
operator, the resulting nonlinear hyperbolic system is numerically approximated.
Representative results illustrating the numerical methodology are presented.

Keywords: Polluted flow, porous medium, Glimm’s scheme, operator splitting
technique.

environmental state. Important examples of the latter are
groundwater flows and pollutant contamination of soils.
Unsaturated porous media, according to Tien and Vafai (1990),
have been studied since the 1920s. The drying phenomenon
was simulated supposing that the fluid motion through the
porous medium was caused by diffusion only (the balance of
linear momentum was substituted by the diffusion equation).
In other studies, the influence of capillary forces (surface
tension) in the modeling of liquid motion has also been
considered.

Most of the works concerning transport phenomena
in porous media employ a volume averaging technique
— describing concentration and velocity components as
volumetric averages in order that a classical continuum
mechanics context may be used to study the momentum
transport. A comprehensive review, comparing different
models for complex problems of transport in porous media
employing this approach is found in Alazmi and Vafai
(2000).

A distinct approach is used in this work — a mixture
theory one, in order to study the dynamics of the flow of a
mixture of two fluids — a Newtonian fluid and a dispersed
pollutant — through a rigid cylindrical shell porous matrix.
A preliminary local description for the flow of these two
constituents through a wellbore is performed by employing

NOMENCLATURE
F=Y
G=vyu
H=yo
mp momentum supply on pseudo-constituent
Py reference pressure
T pseudo-constituent partial stress tensor
u dimensionless pseudo-constituent velocity
Vg pseudo-constituent velocity
Greek symbols
porous matrix porosity
y Darcian term coefficient
Pr pseudo-constituent mass density
T dimensionless time
) pollutant concentration
4 dimensionless spatial coordinate
v saturation
Subscripts
F pseudo-constituent
i cylindrical shell internal radius
e cylindrical shell external radius
INTRODUCTION

Transport phenomena in porous media are related
to problems that impact the energy self-sufficiency and the

a mixture theory approach. A mixture of four overlapping
continuous constituents is considered: a solid (porous
medium), a liquid (representing the Newtonian fluid), the
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pollutant — which may be solid (very small particles), liquid
or gas and, finally, an inert gas included to account for the
compressibility of the mixture as a whole.

Assuming an isothermal flow, the mixture theory
requires momentum sources to account for the mechanical
coupling among the constituents. Besides the momentum
source — usually called a Darcian term — the cylindrical shell
geometry gives rise to other source terms, which would be
absent in a rectangular geometry, for instance. Supposing the
porous matrix rigid and at rest and since the gas constituent
is present for allowing changes in the liquid fraction (or
liquid concentration) only — so that, no equation is required to
describe its behavior, it suffices to solve the momentum and
mass balance equations for the constituents representing the
Newtonian fluid and the pollutant. At this point an important
hypothesis is considered — the amount of pollutant present,
at any time instant is so small, compared with the Newtonian
liquid, that it is convenient to consider a pseudo-constituent to
represent the mixture of the Newtonian fluid and the pollutant.
As a consequence, the motion problem will be reduced to
solving mass and linear momentum balance equations for
this pseudo-constituent combined with the pollutant mass
balance.

The radial flow of the above described mixture
through a porous cylindrical shell, considering a strongly
advective process, consists of a nonlinear hyperbolic system
of three equations whose approximation is performed by
combining Glimm’s scheme — specially designed to deal with
problems that may give rise to shock waves and an operator
splitting technique — an effective tool to account for the non-
homogencous part of the differential equations.

MECHANICAL MODEL

This work studies the flow of a polluted fluid through
a porous medium, the polluted fluid being composed by a
Newtonian fluid and a very small amount of pollutant — this
latter consisting of very small solid particles, liquid, or gas,
dispersed in the Newtonian fluid. The small quantity of
pollutant has motivated an alternative mixture theory approach
—namely considering the mixture of a Newtonian fluid and a
pollutant as a pseudo-constituent of a mixture, which, from
now on will be conveniently denoted as fluid constituent.
The above-mentioned assumption allows considering, in
turn, this so-called pseudo-constituent as a single constituent
of a mixture, concerning mass and momentum balance
equations.

As a consequence, the motion of a polluted fluid through
a porous medium will be described by mass and momentum
balance equations for the pseudo-constituent combined with
the mass balance for the constituent representing the pollutant.
The motion of a mixture of isothermal constituents under a
mixture theory approach is usually described by mass and
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momentum equations for every constituent of the mixture and
for the mixture as a whole. This work assumes a chemically non
reacting continuous mixture of a rigid solid constituent at rest, a
pseudo-constituent (representing the polluted fluid — actually a
very small quantity of pollutant dispersed in the Newtonian fluid)
— a liquid, denoted as fluid constituent and an inert gas playing
the role of an additional constituent included to account for the
mixture compressibility. Under all these hypotheses, it suffices to
solve mass and momentum balance equations for this so-called
fluid constituent as well as the mass balance for the constituent
representing the pollutant. The fluid constituent mass balance is
given by (Atkin and Craine, 1976; Rajagopal and Tao, 1995)

Pr V- (pve) =0

ot (1)
where Pr stands for the fluid constituent (pseudo-
constituent) mass density — representing the local ratio
between the fluid constituent mass and the corresponding
volume of mixture and Vr is the fluid constituent velocity in
the mixture.
The balance of linear momentum for the fluid
constituent is given by (Atkin and Craine, 1976; Rajagopal
and Tao, 1995)

pF[a;tF+(VvF)vFJ:V~TF+mF+ p.b, @

in which Ty represents the partial stress tensor — analogous to
Cauchy stress tensor in Continuum Mechanics — associated
with the fluid constituent, the body force (per unit mass) is
represented by b . while m ; is the momentum supply acting on
the fluid constituent due to its interaction with the remaining
constituents of the mixture. In other words, the interaction
among the pseudo-constituent, the solid constituent and the
inert gas. This momentum source is an internal contribution,
so the net momentum supply to the mixture due to all the
constituents must be zero: Z;mi =0. The balance of
angular momentum is satisfied through an adequate choice
of T,. Assuming the partial stress tensor symmetrical, it is
automatically fulfilled.

The ratio between the fluid fraction ¢ and the porous
matrix porosity € is defined as the saturation y, so that

P _Pr

e g,

0< y<1 everywhere ©)]

in which p, is the actual mass density of the polluted fluid —
regarded as a single continuum, in contrast to P » defined as the
fluid constituent (the pseudo-constituent) mass density.
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According to Williams (1978) and Saldanha da Gama
and Sampaio (1987), the following constitutive relation may
be considered for the momentum source term — which accounts
for the dynamic interaction among the constituents, in a
mixture representing an unsaturated flow of an incompressible
Newtonian fluid through a porous matrix
e’u, b - e’n, D @)

K

P =m0y, —BYVY, o=

where I/ represents the fluid viscosity (measured considering
a Continuum Mechanics viewpoint), K the porous matrix
specific permeability and D a diffusion coefficient —analogous
to the usual mass diffusion coefficient.

An analogy with the stress tensor acting on an incompressible
Newtonian fluid within a Continuum Mechanics framework
probably led Williams (1978) to consider the partial stress tensor
acting on the fluid constituent as being proportional to the pressure
acting on it and to the gradient of its velocity, suggesting a
constitutive relation analogous to the usually employed for Cauchy
stress tensor with such a behavior. A further simplification has
been later proposed by Allen (1986), who concluded that among
the three distinct momentum transfer mechanisms in the mixture —
namely: shear stresses, interphase tractions and momentum transfer
through fluid drag on the porous matrix, the normal fluid stresses
were dominant, the shear stresses and interphase tractions being
negligible when compared to the fluid drag, so the partial stress
tensor may be approximated by the following relation

T, =—<’py’l )
where p is a pressure (assumed constant while the flow is
unsaturated) and I is the identity tensor.

Assuming the mass transfer as caused by an advection-
diffusion process of the pollutant in the binary-mixture
(representing the Newtonian fluid and the pollutant), the
pollutant mass balance is given by

Oo(pr ®)

P +V-(p,0v,)=V-(p,DV &)+r )

in which P 7 stands for the pseudo-constituent (Newtonian fluid +
pollutant) mass density and V r for its velocity. The concentration
of the pollutant in the binary mixture (representing the Newtonian
fluid and the pollutant), o, is defined as the mass fraction of the
pollutant in the binary mixture, being expressed by the following
equation® =P,/ Pr, in which P s stands for the pollutant mass
density regarded as a constituent of the mixture — in such a way
that the pollutant actual mass is obtained by its integration over
the whole mixture. Besides, D represents the diffusion coefficient
of the pollutant in the binary mixture and 7 the rate of production
of the pollutant per unit volume.
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In the absence of any chemical reactions, which
could alter the quantity of the pollutant, it comes that the
production term 7 is zero. Also, diffusion will be neglected,
in a first approach, so that the diffusion coefficient D is zero.
This hypothesis stands for a very high advective flow, which
is considered in this work. As a consequence of these two
assumptions, the right-hand term of equation (6) vanishes.

Now a one dimensional approach is used to simulate the
flow of a binary mixture — representing a pollutant dispersed in
a Newtonian fluid — through a cylindrical shell porous matrix,
assuming that all the quantities depend only on the time ¢ and
on the position » and that v is the only non vanishing component
of the fluid constituent (pseudo-constituent) velocity v . Under
these assumptions the balance equations (1), (2) and (6) combined
with saturation definition — Eq. (3)—and the constitutive relations
@)-(5) give rise to the following nonlinear system

a\,/ a(\lf)

dv av
PNV FYV—|=

ot or -
0 _\ Bpie’ oy
Lﬁ(gzwp)_# ;i Bl
0 d \UA%0)
— + =1
EY (o) p (yov) B
Br;

Areference pressure Py is now defined as Po = p+
Also, the following dimensionless quantities are employed to
present Eq. (7) in a dimensionless form:

\l V p}
L ,—_f " ®)
p_/S €D, re_"}

in which %+ =7, —7; with 7, and 7; standing for the external and
internal radii of the cylindrical shell matrix. It is worth mention-
ing that the external radius 7, will be used as a reference in the
numerical simulation only, since the numerical results will be
presented in a region from 7; to 7,. Boundary conditions will be
imposed solely at the cylindrical shell internal surface. Equations.
(8) and the reference pressure P allow rewriting the nonlinear
system of equations (7) in a more convenient form as

ar ( )___
2
—(w e (ufu ry?)=-% ; Ly ©
9 vo +i ou =Y
x e Y £
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NUMERICAL APPROXIMATION

In this section a scheme, developed to simulate
nonlinear hyperbolic problems, is employed to obtain numerical
approximations for the nonlinear system of partial differential
equations described in Eqs. (9). Two main ingredients have
been used to achieve this goal: an operator splitting technique
together with the Glimm’s scheme, successfully employed
in the simulation of other nonlinear hyperbolic problems.
The procedure consists in a decomposition of the operator
in such a way that its merely hyperbolic part is split away
from its purely time evolutionary one. Glimm’s method,
specifically developed to deal with hyperbolic non-linear
problems, consists in marching from a time # to a time #n+1
through the solution of the associated Riemann problem for
each two consecutive time steps. It is based on a theory whose
mathematical formulation has a solid thermodynamic basis,
which could be expressed by the entropy condition (Smoller,
1983). Concerning Glimm’s method simulation of nonlinear
hyperbolic systems, a comprehensive approach is presented
in Martins-Costa and Saldanha da Gama (2003) where this
method is employed to the simulation of a pollutant transport
in the atmosphere.

A wide range of non-linear hyperbolic problems have
already been simulated by combining Glimm’s scheme and
an operator splitting technique among which are the wave
propagation in gas pipelines, shock propagation in gas
dynamics problems and wave propagation in a damageable
elasto-viscoplastic pipe (see Freitas Rachid et al., 1994 and
references therein). Other relevant examples that could be
quoted are the response of non-linear elastic rods (Saldanha
da Gama, 1990) and the isothermal and non-isothermal flow
of either ideal or Newtonian fluids through unsaturated porous
media — covering most one-dimensional cases of interest (see
Martins-Costa and Saldanha da Gama, 2001, and references
therein). It is remarkable that the problems addressed in these
works, due to their hyperbolic nature, do not require boundary
conditions. They are essentially initial value problems (John,
1982).

Glimm’s method, which deals with the homogeneous
part of the hyperbolic operator represented in Egs. (9)
employs the solution of the associated Riemann problem to
march from a time » to a time n+1. Before using Glimm’s
scheme for solving Eqs. (9) with appropriated initial data,
the solution of the associated Riemann problem must be
known. In short, Glimm’s method allows building a solution
for an initial value problem — namely nonlinear hyperbolic
systems subjected to arbitrary initial data, through the solution
of a certain number of associated Riemann problems. The
arbitrary initial condition given by a function of the position

& is approximated by piccewise constant functions, known
as step functions — with equal width steps. In the sequence
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a Riemann problem — an initial value problem whose initial
condition must be a step function, is to be solved for each
two consecutive steps. The main idea behind the method
is to appropriately gather the solution of as many Riemann
problems as desired to successively march from time T =71,

to time T,y =T, +AT,

At this point the following redefinition of variables
is performed in order to express the system (9) in a more
convenient way:

F=y, G=yu and H= yo (10)

The first step consists in obtaining an initial
approximation for (F .G, H ) by advancing At in time through
the homogeneous (merely hyperbolic) part of the operator via
Glimm’s method, using the values of (F ,G,H)attimeT =1,
as initial data. The numerical approximation for the solution
at time T = T,,; 1s then obtained by advancing in time with
the same time step At through the purely time evolutionary
system. This procedure is repeated until reaching a specified
simulation time.

The numerical procedure employed to advance
from the time T =7, to T =71,,;, considering F'=F, &)
G=G,(&t)and H=H, (&,r ), may be defined as:

OF G _ 1

o e &

G (G L) 16

9O oY i =T yFG 11
BI+BE_,(F+ ) e ! an

9H  J(GH)_ _1GH
on &\ F ) & F

with F=F (£).G=G,(§)and H=H,(5), att =1,
In order to approximate the fields F, G and H at the time
T =71,, in the non-homogeneous problem described in Eq.
(11) an operator splitting technique, described in details by
Martins-Costa and Saldanha da Gama (2001) is employed.
It consists of a decomposition of the operator defined in
Eq. (11) so that its merely hyperbolic part — namely the
homogeneous associated system, is split away from its purely
time evolutionary one — essentially an ordinary system. This
technique gives rise to an initial approximation, obtained by
advancing AT in time through the equations representing the
homogeneous problem, by employing Glimm’s method.
Once this approximation has been evaluated, the
numerical approximation for the solution (F ,G,H) at time
T =1,, is finally reached by advancing in time to solve the
following time evolutionary problem, with the same step
At =1,,, — 1, through equations:
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oF __1

at &

oG 1 G*

¥=—€7—YFG (12)
oH__16H

81 & F

with F = £, (£),G=G,.,(§)and H = H,,, (& )att =1, by
employing a first order Euler approximation, as follows:
P @R @- {6 @)

G= Gnﬂ (& ) = Gn+1 (é )_

1[6..6)] (a)]
£ F.@)

_ (13)

. (€)G.. €) At

H=H, €)=, €)- {IL@@)}M

in which all quantities have been evaluated at 7,,.,; and

considering At =1,,,— 1T

n*

The fields £, &) G,., (¢)and H, (€ ) used as initial
data in (13) are obtained by advancing At in time via Glimm’s
method, through the following homogeneous problem:

[oF 8(?
o 8&

96 JQ—( +F? ) 0

o o

JdH 0

8r BE,,( )

withF=}3:,(§) G=é (@)andH:[:In (@), attT =71,

In other words, F, ,, ©) G,., (€)and H,, (€) are the
solutions of (14) evaluated at the time 7,,,. The main idea
behind Glimm’s scheme (Smoller, 1983) is to appropriately
gather the solution of as many Riemann problems as desired
in order to successively march from time 7, to T,,,;. Glimm’s
scheme, specifically developed to deal with discontinuous
problems, preserves the shock waves magnitude and position,
within an uncertainty of A& (width of each step). Such features
are not found in the usual numerical procedures (e.g. finite
clements and finite differences). Besides, Glimm’s method
presents a clear advantage of saving computer storage

(14)
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memory, when compared to other methodologies such as
a finite element method associated with a shock capture
procedure, however its limitation to one-dimensional problems
is an important shortcoming. In order to employ this scheme a
piecewise constant function is used to approximate the initial
data, as follows:

F=F,@)=F, =, @ +0,A%)

G=G,(€)=G, =G, (€ +6,A%)
H=H,()=H, =H,(E +0,AL)

as)

at &, —AE/2<E <& +AE/2, in which 0, is a number
randomly chosen in the open interval (=1/2, +1/2) and A&
is the width of each step A =§,,, — &,

The above approximations for the initial data give rise,
for each two consecutive steps, to the following Riemann
problem — whose detailed solution is presented in Martins-
Costa and Saldanha da Gama (2003):

oF BG

E 8&

G 0d(G& )

Br+a§(F+ ) a6)

oH d (GH

- 4+ — |=0

ot &\ F
with(F,G,H )= (F, G, H, Yort =t,—00 <€ <& +A&/2and
(FGH) (n .G, ,H )fortzt £ —AL/2<E <.

Denoting by F.* GR and H * the generalized solution
of the Riemann problem (16) the approximation for the
solution of (14) at the time T, is given as follows:

(F:) FR({; tn+|)
G,1(€)=G, E.,n)
H=[:[n+1 (&)sz (&,T,,H)

a7

for &, <& <&, In order to prevent interactions among nearby
shocks of adjacent Riemann problems, the time step AT, and
consequently, T, ;must be chosen in such a way that the Courant-
Friedrich-Lewy (Smoller, 1977) condition is satisfied:

_AE
Iklm a8)

n+l

where |7»| . 18 the maximum (in absolute value) propagation
speed, considering all the Riemann problems.
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NUMERICAL RESULTS

T

Figure 1. Problem statement.

This section presents some results obtained by
employing the preliminary model described in the previous
sections to study the radial propagation of a pollutant in soils,
starting from a cylindrical contaminated well. These results
have been obtained by approximating the problem stated in
Egs. (9) with initial data given by a step function, subjected to a
boundary condition characterizing an impermeable wall at the
inner surface of the cylindrical shell porous matrix, depicted
in Fig. (1), which is given by §{ =0 = u =0.

initial
data

t=0,20

©=0,40 \\\\\wx\\\
\—
"

©=0,60

1=0,80

t=1,00

e
.

ANNNE

yo

Figure 2. Saturation, binary mixture velocity and pollutant

concentration variation with radial position for y = 1. Each

line: distinct T — from left to right, vertical axis: numerical

values of y, u and v ®; horizontal axis: €. Initial data: step
function for v and ® and constant u.
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Some selected results are presented in Figs. (2) to
(4), cach of them consisting of a set of six lines and three
columns of graphs, each line representing a distinct time
instant — the first one being the initial condition — and each
column representing the behavior of a distinct variable. The
evolution of saturation , fluid constituent (binary mixture)
velocity u and pollutant concentration y ® along with radial
position for five selected time instants, starting from the initial
data depicted in the first line, is shown. All these results have
been obtained by employing Glimm’s difference scheme
combined with an operator splitting technique to account
for the non-homogeneous portion of the hyperbolic operator
with 600 steps for each time advance. In all computations
the temporal and spatial increments considered were such
that Az/Ax =107, satisfying the Courant-Friedrich-Lewy
condition expressed by Eq. (18).

initial
data

1=0,20

T=0,40

\

1=10,60

7=0,80

dadED

©=1,00

D

I —
1|
s
v yo
Figure 3. Saturation, binary mixture velocity and pollutant
concentration variation with radial position for y = 1. Each
line: distinct T — from left to right, vertical axis: numerical
values of W, u and y ®; horizontal axis: &. Initial data: step
function for y and ® and zero u.

The qualitative behavior of saturation, fluid constituent
velocity and pollutant concentration, expressing the expected
features of the hyperbolic operator employed to describe
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the problem, is displayed from left to right, the vertical axis
corresponding to their numerical value and the horizontal axis

to the spatial coordinate &. In all the depicted graphs the left-
hand side corresponds to &, the cylindrical shell porous matrix
internal radius (€ = 0) while at the right-hand side &, represents
the external radius (§ =1). A convenient normalization,
accounting for maximum and minimum values of y, # and ®
was performed in such a way that the minimum and maximum
displayed values correspond to zero (or a minimum) and unit
values for v, u and .

Figure 2 shows the pollutant propagation in the radial
direction from the internal radius &, to the external &, the pollutant
being initially concentrated in the internal half of the cylindrical
shell. The binary mixture velocity, initially constant, presents an
increment caused by the jump in the saturation. The decrease in
the velocity is caused by two distinct factors: the presence of the
Darcian term, as well as a geometrical factor, since the flow area
increases linearly with the radius of the cylindrical shell. Also, it
may be observed that all the considered region between &; and &,
suffers the influence of the perturbation caused by the saturation
and pollutant concentration.

initial
data
T \ A \

1=0,40

T=0,60

©=0,80

t=1,00

A~

v u yo

Figure 4. Saturation, binary mixture velocity and pollutant

concentration variation with radial position for y = 1. Each

line: distinct T — from left to right, vertical axis: numerical

values of y, u and y o; horizontal axis: &. Initial data: step
function for y and ® and zero u.
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Figures (3) and (4) show the evolution of the pollutant
propagation in the radial direction, starting from the same
mitial data—namely zero velocity and jumps for the saturation
vy and pollutant concentration ®, with the pollutant being
initially concentrated in a neighborhood of &,. Since the only
varying parameter is the Darcian term coefficient, with y =1
in Fig. (3) — the same value used in Fig. (2) — and y =100
in Fig. (4), a comparison between these two figures shows
a strong influence of the Darcian term coefficient not only
smoothening the shocks but also decreasing the propagation
speed of perturbation. Actually, in Fig. (4) only y ® shows a
shock propagation front.

An important feature, present in all depicted results,
is that the discontinuities for the variables y and u are in the
same spatial position. The numerical method accuracy (see
Martins-Costa and Saldanha da Gama (2004) and references
therein) is mathematically ensured, all quantities being
globally preserved in such a way that the maximum error
concerning the shock position is of the order of magnitude of
the step width while the shock amplitude is preserved — no
shock dissipation being present.

FINAL REMARKS

A preliminary local model for the flow of a Newtonian
fluid containing a pollutant through a wellbore was built
under a mixture theory approach and, after considering
the flow on radial direction only, the resulting set of three
nonlinear partial differential equations has been simulated
by combining Glimm’s scheme with an operator splitting
technique to account for the non-homogeneous part of the
hyperbolic operator.

Glimm’s method, besides preserving shock waves
magnitude and position, is a convenient tool for solving one-
dimensional nonlinear problems, exhibiting features such as
low storage costs and low computational effort, when compared
to other numerical procedures to approximate nonlinear
problems. Besides, combined with an operator splitting
technique, this numerical methodology allows the accurate
approximation of a nonlinear system of non-homogeneous
partial differential equations representing mathematically the
flow of a polluted fluid through a wellbore.
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