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ABSTRACT 
 
This paper presents a 3D model for the determination of the temperature 
field in an electromagnetic launcher. The large amounts of energy that are 
dissipated into the structure of an electromagnetic launcher during short 
periods of time lead to a complicated thermal management situation. 
Effective thermal management strategies are necessary in order to maintain 
temperatures under acceptable limits. This paper constitutes an attempt to 
determine the temperature response of the launcher. A complete three-
dimensional model has been developed. It combines rigid body movement, 
electromagnetic effects and heat diffusion together. The launcher consists of 
two parallel rectangular rails and an armature moving between them. 
Preliminary results show the current distribution on the rail cross-section, 
the localized resistive heating, and the rail transient temperature response. 
The simulation results are compared to prior work presented for a 2D 
geometry by Powell and Zielinski (2008). 

 
Keywords: Electromagnetic launcher, Resistive heating, Thermal 
Management, Numerical simulation. 

NOMENCLATURE 
 
A
r

  vector magnetic potential, Wb/m 
B
r

  magnetic flux density, T 
cp  specific heat, kJ/kg·K 
D
r

  electric flux density, C/m2 

E
r

  electric field intensity, V/m3 

F
r

  Lorentz force acting on the armature, N 

xF   x-component of the Lorentz Force, N 

J
r

  current density, A/m2 

eJ
r

  externally generated current density, A/m2 

0J
r

  input current, A/m2 

k  thermal conductivity, W/m·K 
M  armature mass, kg 
nr   normal vector 
t  time, s 
T  temperature, K 
V  electrical potential, V 
x0  armature position, m 
 
Greek symbols 
 
µ   permeability, H/m 
ρ   density, kg/m3 

vρ   volume charge density, C/m3 

σ   conductivity, S/m 
Ω   armature volume, m3 

INTRODUCTION 
 

The cooling of an electromagnetic launcher 
constitutes a challenging thermal management 
problem. High heat fluxes of pulsating nature result 
as a consequence of its operation. Large amount of 
energy (of the order of 101 – 102 MJ) is deposited in 
the launcher structure in periods that last a few 
milliseconds. 

From the heat transfer point of view, the 
problem is interesting not only because of the high 
heat pulses, but also because of the coupled physical 
phenomena behind the large energy dissipation. The 
model should account for the movement of the 
projectile, the imposed current, the associated 
magnetic field and the temperature gradient resulting 
from the ohmic dissipation. Another aspect that 
makes this problem attractive is its non-uniformity; 
the current density the ohmic resistance and 
associated heat generation are not distributed 
uniformly throughout the rail cross section, instead a 
“skin” phenomena occurs leading to a concentration 
of current and heat generation in the outer layers of 
the rail (Marshall, 1984) 

In recent years, much effort has been focused 
on the development and improvement of 
electromagnetic launcher technology. The design 
parameters placed on the railguns by the U.S. Navy 
are 300~500 km range and continuous firing rate of 
up to 12 shots per minute (McFarland and McNab, 
2003). The practical limitation of the barrel length is 
between 10~12 m. These requirements lead to high 
current levels (about 6 MA) and short pulse duration 
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(about 8 ms). About 16% of the total energy (Smith 
et al., 2007) will be deposited in the launcher 
structure. This high energy deposition makes the 
thermal management an important issue. Several 
recent numerical investigations have been performed 
to study the electromagnetic field and heat generation 
(Powell et al., 1993; Powel and Zielinski, 1995; 
Smith at al., 2005) in electromagnetic launchers. 

In this paper, a full three-dimensional model is 
used to simulate the launching process. The 20 kg 
projectile (embedded in an armature) is accelerated 
from rest to about 2000 m/s in 8 ms. The trajectory of 
the projectile, current transport in the rails and the 
transient temperature response are computed. 

 
MODEL 

 
A sketch of the computational model is shown 

in Fig.1. The launcher is represented by two parallel 
rails and a moving armature. The surrounding air is 
included to account for the magnetic field and the 
“magnetic insulation” boundary condition (see Eq. 
(16)). 
 

 
 

Figure 1. Schematic representation of the 
computational domain. 

 
The material of the rails is copper and the 

armature is made of aluminum. The dimensions of 
the rail and the armature are 12 m x 0.06 m x 0.135 
m and 0.04 m x 0.135 m x 0.135 m (length x width x 
height). Table 1 gives other properties for the rail and 
armature. 
 
Table 1. Properties of the rail and armature 

Property Unit Rail 
(Copper) 

Armature 
(Aluminum) 

ρ  kg/m3 8700  
k W/m.K 400  
σ  S/m 71098.5 ×  71077.3 ×  
cp J/kg.K 385  

 
Fig. 2 and Fig. 3 are the 2-D projection of the 

railgun in horizontal and vertical directions. From 
Fig. 2 we can see that the driving current flows 
through one rail, across the armature and then flows 

back along the other rail. In the current model, a 
fixed mesh is used and the armature movement is 
modeled as a moving conductor distribution that is 
interpolated on the fixed mesh. 
 

 
 

Figure 2. Top view of the launcher. 
 

12m 

 

 
 

Figure 3. Vertical cross section of rails and 
armature. 

 
The equations to be solved are the appropriate 

Maxwell’s equations, the energy transport equation 
for the rails, and an equation to account for the 
moving armature. 

Let µ  and σ  be the permeability and the 

electric conductivity, JBDE
rrrr

,,,  and vρ be the 
electric field density, the electric flux density, the 
magnetic flux density, the current density and 
volume charge density. The governing Maxwell’s 
equations are as follows: 
 

JB
rr

=×∇ )1(
µ  

(1)

 

t
BE
∂
∂

−=×∇
r

r
 

(2)

 

eJBvEJ
rrrrr

+×+= )(σ  
(3)

 

vD ρ=⋅∇
r

 
(4)

t
J v

∂
∂

−=⋅∇
ρr

 

 
(5)

In Eq. (1), the displacement current tD ∂∂
r

is 
neglected (Powel at al., 1993). By taking the time 
derivative on both sides of Eq. (4) we obtain 

0=∂∂ tvρ . Then Eq.(5) can be simplified to Eq.(6). 

Rail
Armature 

Rail

0.06m

0.135m

0.135m
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In Eq. (3) eJ
r

 is an externally generated current 
density to specify all source currents and v

r
is the 

velocity of the moving conductor. 
 

0=⋅∇ J
r

 
 

(6)

Let V  and A
r

 be the scalar electric potential 
and the vector magnetic potential, respectively. Then 
we have, 
 

t
AVE
∂
∂

−−∇=
r

r
 

(7)

 
AB
rr

×∇=  
 

(8)

By combining Eqs. (1), (3), (7) and (8), an 
expression for the vector magnetic potential is 
obtained. 
 

eJVAvA
t
A rrrr
r

=∇+×∇×−×∇×∇+
∂
∂ σσ

µ
σ )()1(  

 

(9)

And if we make a further approximation by 
neglecting the coupling between electric and 
magnetic field that is neglecting induced currents 

tB ∂∂
r

 from Eq. (2), we get 0=×∇ E
r

, which means 
that the electric field can be expressed in terms of 
electric potential as shown in Eq. (10). This 
approximation holds when the skin depth is much 
larger than the geometry of the conductor. For our 
specific input current J0, this condition is satisfied. 
 

VE −∇=
r

 
 

(10)

By applying the same approximation in Eq. (3) 
it is possible to obtain Eq. (11). Combining Eqs. (6), 
(10) and (11) we obtain Eq. (12) for current balance. 
 

eJEJ
rrr

+= σ  
 

(11)

 
0)( =−∇⋅∇ eJV

r
σ  

 
(12)

The energy equation is represented in (13). The 
source term is given by σJJ

rr
⋅ . In this study, the 

resistive heating in the armature is neglected. So Eq. 
(13) is only solved in the rails. 
 

σ
ρ JJTk

t
T

pc
rr

⋅
+∇−⋅∇=

∂
∂ )(  

(13)

Finally we consider the armature’s movement. 
Let M and xF  be the mass of the armature and the 
Lorentz force acting on the armature along the rail 
direction. The Lorentz force can be calculated 
through formula (14). Ω  is the volume of the 
armature. 
 

∫Ω Ω×= dBJF
rrr

 
 

(14)

The dynamic equation for the armature position 

0x  is: 
 

M
F

dt
xd x=2

0
2

 

 

(15)

Equations (9), (12), (13) and (15) are the basic 
differential equations to be solved subject to some set 
of appropriate initial and boundary conditions. The 
dependent variables for these four equations are 

TVA ,,
r

 and x0. 
 
MODEL VERIFICATION 
 

The present model is first compared with a two-
dimensional study by Powell and Zielinski (2008) 
(see Figs. 5-8). 

The two-dimensional model is shown in Fig. 4. 
The computational domain is one quadrant (left-top 
part) of the configuration shown due to symmetry 
about y=0 and vertical center line. The assumptions 
for this 2-D problem are (Powell and Zielinski, 

2008): (1) kJJkEEkAA ˆ,ˆ,ˆ ===
rrr

 and (2) all 
variables depend only on x and y and not on z. 
 

 
Figure 4. x-y cross section of the rails. 

 
In Powell and Zielinski's (2008) work, a 2D 

form of Eq. (9) is used. However the current balance 
equation (Eq. (11)) is not solved. 

Starting from assumption (1), it is possible to 
write kJJ ee

ˆ=
r

 and kVV ˆ∇=∇  from Eqs. (7) and 
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(11). By substituting kJe
ˆ  and kV ˆ∇  into Eq. (12), 

and using the assumption (2), Eq. (12) is then 
satisfied automatically. Under these two 
assumptions, the formalisms for the electromagnetic 
(EM) field for this and the Powell and Zielinski's 
(2008) work are identical. The energy equation is 
also the same. 

By setting the identical boundary conditions 
expressed in Eqs. (16) and (18), we can verify the 
current model with results from Powell and 
Zielinski's (2008). Fig. 5 and Fig. 7 were taken from 
Powell and Zielinski's (2008) and Fig.6 and Fig. 8 
are the present model results. These figures validate, 
in a qualitative way, the solution obtained with the 
present model. A quantitative validation was not 
possible since only graphical information is available 
in the work of Powell and Zielinski's (2008). 

Fig. 5 shows the solution obtained by Powell 
and Zielinski's (2008) for the magnetic potential 
field. This figure is compared with Fig. 6 obtained 
with the present solution. A qualitative analysis 
shows that the gradients in both figures are similar 
and that the maximum values for the magnetic 
potential are in good agreement. 
 

 
Figure 5. Magnetic potential contours at 5 ms 

(Powell and Zielinski's, 2008). 
 

 

 
 

Figure 6. Magnetic potential contours at 5 ms. 
 

In Figs. 7 and 8 the temperature fields are 
compared. The maximum temperature is 365 K in 

both solutions, and the location of the hot spot is in 
both cases the upper right corner. The gradients and 
temperature values are qualitatively similar. Note 
that color scale is different from Fig. 7 
 

 
 

Figure 7. Rail temperature response at 5 ms 
(Powell and Zielinski's, 2008). 

 
 

 
 

Figure 8. Rail temperature response at 5 ms. 
 

3D CASE STUDY 
 

The model discussed in the previous sections is 
now extended to the 3D problem schematically 
represented in Fig. 1. The problem’s boundary 
conditions are discussed in the following section. 
 
Boundary Conditions 

 
For the magnetic field the “magnetic insulation” 

condition on A
r

 at each exterior boundary which sets 
the tangential component of magnetic potential to 
zero is used. Here, nr  represents the outward normal 
direction of any exterior surface. Eq. (16) shows this 
boundary condition for Eq. (9). 

The “electric insulation” condition, Eq.(17), is 
applied on external boundaries except for the two 
current driven ends of the rails. And the 
condition

0JJ
rr

=  and 0=V are set for the two ends 
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respectively. In this study, 0J
r

is considered uniform 
on the boundary. 

For the energy equation, a thermal insulation 
condition, Eq. (18), is set on all rail surfaces. 

0=× An
rr

 (16)
 

0=⋅ Jn
rr

 (17)
 

0=∇⋅ Tn
r

 (18)
 
Initial Conditions 
 

mWbA /0=
r  

VV 0=  
KT 300=  
mx 00 =  

smdtdx /00 =  
 

(19)

Equations (9), (12), (13) and (15) with the 
indicated boundary and initial conditions are solved 
simultaneously to determine the electromagnetic 
field, temperature response in the rails and the 
position and velocity of armature. 
 
Numerical Results 
 

The specific input current 0J
r

 used in this study 
is shown in Fig. 9. 
 

 
 

Figure 9. Input Current J0. 
 

Figure 10 illustrates the position of the armature 
during launching. 
 

 
 

Figure10. Armature position x0. 
 

Figure 11 shows the armature velocity. 
 

 
 

Figure 11. Armature velocity dtdx0 . 
 

The maximum temperature of the rail varies 
with time, as shown in Fig. 12. 
 

 
 
Figure12. Maximum temperature of the rail during 

launching. 
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Figs. 13 and 14 show the temperature and 
current profile of a cross-section (at x = 4m,  
t = 0.0088s) of the rail. From these two figures, we 
can see that the temperature and current have similar 
distributions. The current distribution qualitatively 
matches the results by Kerrisk (1981). 
 

 
Figure 13. Temperature profile at x = 4 m and  

t = 0.0088 s. 
 

 
Figure 14. Current profile at x = 4 m and  

t = 0.0088 s. 
 

CONCLUSION 
 

A full three dimensional model is presented to 
simulate the launching process of an electromagnetic 
launcher. The solution was first validated by 
comparison with available results of a 2D problem 
(Powel and Zielinski, 2008). After validation, a 
complete 3D problem, with coupled magnetic and 
thermal phenomena, was solved. At this first step, the 
relationship between temperature and current density 
was investigated. In a follow up work, cooling 
channels will be added to the model in order to study 
the best geometric configuration of the rails cooling 
system. 

Since the temperature profile on a cross-section 
shows that the inside edge has the highest 
temperature. It is expected that the cooling channels 
should be located closer to the inside face of the rail. 

However, its exact location and form are aspects to 
be investigated. 
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