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ABSTRACT 
 

 

Two cases of the two - phase Stefan problem in a semi - infinite slab are 

presented here: one has heat flux boundary condition proportional to t−½ and the 

other has constant temperature boundary condition. In these two cases the exact 

solution exists, the relationship between the two boundary conditions is presented 

here, and the equivalence between the two problems is shown. 

 

 

 

 

 

 

 

Keywords: two phase Stefan Problem, exact solution, heat flux boundary 

condition, temperature boundary condition. 

 

 

!OME!CLATURE 
 

c  specific heat, J/kg ºC 

k  thermal conductivity, W/m ºC 

L latent heat of fusion, J/kg 

q(t) heat flux, W/m
2
  

s(t) interface position, m 

t time independent variable, s 

T(x,t) temperature profile of the phase change 

material, ºC 

Tf melting temperature, ºC 

T0 initial temperature, ºC 

u(x,t) difference between T(x,t) and Tf, ºC 

u0 difference between T0 and Tf, ºC 

x spatial independent variable, m 

Ste  Stefan number 

 

Greek symbols 
 

α thermal diffusivity, m
2
/s 

ρ density, kg/m
3
 

ξ similarity variable, m/s
1/2

 

λ parameter to be determined, dimensionless 

 

Subscripts or superscripts 
 

 L liquid phase 

 S solid phase 

 f melting point 

 0 initial state 

 

 

 

I!TRODUCTIO! 
 

The free boundary problem presents many 

applications in physics and engineering. In particular, 

the so called “One and Two Phase Stefan 

Problem.”(Alexiades and Solomon, 1993) in a semi – 

infinite slab is of great interest. 

The one - phase Stefan Problem takes place 

when the initial phase is solid (liquid) at the melting 

point, the material is heated (cooled) from the side 

and, as a consequence, the temperature increases 

(decreases). The substance change to liquid (solid) 

phase in the vicinity of the boundary, leaving the rest 

of the solid (liquid) at the same initial temperature. 

This case was studied in a previous work (Boucíguez 

et al, 2006)  

 The two - phase Stefan Problem takes place 

when the initial phase is solid (liquid) at a 

temperature less (greater) than the melting one, the 

material is heated (cooled) from the side and as a 

consequence the temperature increases (decreases) to 

reach the melting point and then the liquid (solid) 

appears. In this case, the two phases: liquid and solid 

present a temperature distribution. These two 

temperature distributions and the interface position 

(free boundary) are unknown. 

 These two cases have exact solution when the 

condition in the boundary is: a constant temperature 

or the heat flux proportional to t
−½

.  

In a previous work (Boucíguez et al, 2006) it 

was shown that in the one - phase Stefan problem, the 

two boundary conditions are equivalent. Now, the 

equivalence between them will be shown for the two 

- phase Stefan problem. 
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Figure 1 shows a scheme of the phase change 

material when solid is the initial condition, (a) at time 

t=0, and (b) at time t>0. If the initial condition is 

liquid the situation is equivalent, the words solid and 

liquid and the inequalities must be replaced in the 

figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. Scheme of the phase change material. 

 

In a previous work (Lozano et al, 2003) it was 

observed that when the flux is q(t) = q0/t
1/2

, the 

temperature in the fixed face stays constant. In fact, 

in figures 2 to 5, the temperature distribution for four 

different times (5, 10, 15, and 20 hours) are shown 

when q0 is equal to 100, 500, 1000, and 2000 

Ws
½
/m

2
, respectively. The corresponding 

temperatures in the fixed face (x=0) are constant and 

equal to 0.0001, 0.0024, 0.0098, and 0.0392 ºC 

respectively. These figures suggest a connection 

between the two boundary conditions and their 

equivalence has been shown here; that is to say: one 

is a consequence of the other and reciprocally 
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Figure 2. Temperature distribution for q0=100 

Ws
½
/m

2
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Figure 3. Temperature distribution for q0=500 

Ws
½
/m

2
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Figure 4. Temperature distribution for q0=1000 

Ws
½
/m

2
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Figure 5. Temperature distribution for q0=2000 

Ws
½
/m

2
. 

 

MATHEMATICAL FORMULATIO! 
 

The two phase Stefan problem can be 

formulated as a heat conduction problem in a semi – 

infinite slab, with two kind of boundary condition: 

constant temperature or heat flux proportional to t
−½

. 

boundary 
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x→∞ PCM solid ohase T<Tf 

(a) phase change material at t=0 

boundary 

 

condition 

x=0 
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(b) phase change material at t>0 
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The problem is completely described by the 

following equation: 

 

,
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and for the constant temperature case 

 

,0),0( >= L
L utu   ,0>∀t     τ<< t0                 (6.1) 

 

or for the heat flux proportional to t
−−−−½ 
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 Where α is the thermal diffusivity, k is the 

thermal conductivity, ρ is the density, c is the specific 

heat and L is the latent heat of fusion. The index L 

and S (upper or sub) denote liquid and solid phase 

respectively. 

 The function s(t), unknown a priori, is the 

interface position as a function of t; and u(x,t)=T(x,t)-

Tf, is the difference between the substance 

temperature T(x,t) and the fusion temperature Tf. At 

the same way uL=TL -Tf, is the difference between the 

temperature at the fixed face TL, and Tf. 

The Eq. 3 is the Stefan’s equation, it represent 

the energy conservation on the interface position. 

The Eqs. (6.1) and (6.2), show the two possible 

boundary conditions: constant temperature (6.1) and 

heat flux ~ 1/t
½
 (6.2). They are the only two cases 

where this problem has exact solution.  

In the two cases, the analytical solution is 

obtained introducing the similarity variable ξ, 

(Alexiades and Solomon, 1993), defined by: 
 

t

x
=ξ                                                                     (7) 

The exact solution of the problem is obtained 

replacing (7) into Eqs. (1) to (6), hence the interface 

position results: 

 

tts Lαλ2)( =                                                  (8) 

 

Where λ is a parameter to be determined for 

each case. For the constant temperature boundary 

condition, λ is given by the equation:  
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and for the flux boundary condition, λ is given by the 

equation:  
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where 
LLL u

L

c
Ste = , 

SSS u
L

c
Ste =  are the 

Stefan’s number (liquid and solid, respectively) and 

S

L

α
α

υ = . 

The second term of the right side of Eqs. (9.1) 

and (9.2) are the same. They correspond to the solid 

phase, that is to say the initial one. 

The two Eqs. (9.1) and (9.2) are transcendental. 

The solution of each one allows obtaining the exact 

solution of each problem. The solution for each 

equation is unique and it implies the uniqueness of 

the similarity solution. In consequence, the Stefan 

Problem admits only one solution.  

The temperature distribution is given by the 

following equations: (Alexiades and Solomon, 1993) 
For the constant temperature boundary condition  
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For the flux boundary condition proportional to 

t
−½ 
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The Eqs. (10.1.a) and (10.2.a) are equal to the 

one obtained for the one phase solution (Boucíguez et 

al, 2006). The Eq. (10.2.b) is equal to (10.1.b), that is 

to say the solid phase has the same expression for the 

two boundary conditions. 

In all these equations erf(ξ) denotes the error 

function and erfc(ξ) denotes the complementary error 

function, 
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The basic properties of these functions are: 
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RELATIO!SHIP BETWEE! THE TWO 

BOU!DARY CO!DITIO!S.  
 

It is useful to name the parameter λ in Eqs. (9) 

and (10), as λ1 for the temperature condition and λ2, 

for the flux condition; so the Eqs. (9) and (10) are 

written as: 

For the temperature boundary condition: 
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For the flux boundary condition  
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as a consequence, Eqs. (10.1) and (10.2) become: 

For the temperature boundary condition 
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For the flux boundary condition  
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The equivalence between the two cases will be 

proved. Evaluating u
L
(0,t) from Eq. (10.2.a), results:  
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Then u
L
(0,t) is constant when the flux is 

proportional at t
−1/2

, calling uL to this constant: 
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Taking the derivative of the Eq. (10.1.a) with 

respect to x, and in virtue of the properties of error 

function, it yields 
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The heat flux at the boundary is q(t)=−kL ux(0,t), 
hence evaluating the Eq. (15) at x=0, the  heat flux 

results: 
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calling q0 to this constant, results: 
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and as a consequence: 
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replacing this value of uL at Eq. (10.1.a) results: 
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This last expression is similar to (10.2.a). 

The comparison between Eqs. (14) and (18), shows 

that, on one hand, they are formally the same and 

they are equal if and only if λ1=λ2=λ. 

On the other hand, replacing q0 from Eq. (17) in 

Eq. (10.2.a) it is obtained: 
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This two Eqs. (17) and (10.2.a) are equal if and 

only if λ1=λ2=λ. 

Thus, it is shown that the two boundary 

conditions are equivalent.  

 

!UMERICAL EVALUATIO! 
 

A simple numerical evaluation of the situations 

discussed in the previous section is presented here, 

for different values q0. The results are presented in 

Table 1; the second column is the value of λ 

corresponding to Eq. (9.2), that is to say λ2. The third 

column is the temperature obtained using this value 

and Eq. (10.2a). The fourth column is the value of λ 

corresponding to Eq. (9.1), that is to say λ1, evaluated 

with the value of u(0,t) given in the third column.  

 

 

 

 

 

Table 1. Values of λ1, λ2, and boundary temperatures 

for different values of q0. 

 

q0 λ2 u(0,t) λ1 

100 0,00078215 0,0000981 7,8215 10
−4

 

500 0,0039107 0,002152 3,9107 10
−3

 

1000 0,0078210 0,009809 7,821 10
−3

 

2000 0,0156391 0,039228 1,5639 10
−2

 

3000 0,0234515 0,088228 2,3452 10
−2

 

4000 0,0312554 0,156761 3,1255 10
−2

 

5000 0,0390478 0.244761 3,9048 10
−2

 

 

In the same way, Table 2 shows, the numerical 

results for different temperature boundary conditions 

and the initial one. The first column is the 

temperature boundary condition, the second the 

initial one, the third is the λ value obtained of Eq. 

(9.1), that is to say λ1. The fourth column is the 

obtained value of q0 (W s
½
/m

2
) using this λ value. 

The fifth column is the λ value evaluated using the 

obtained value of q0 and the initial temperature using 

Eq. (9.2), that is to say λ2.  

 

Table 2. Values of λ1, λ2, q0 for different values of 

temperatures boundary and initial conditions.  

 

uL u0 λ1 q0 λ2 

20 −2 0.32659 1.2626 10
4
 0.32659 

20 −5 0.35419 1.1713 10
4
 0.35419 

25 −2 0.35788 1.4502 10
4 0.35788 

25 −5 0.38259 1.3646 10
4 0.38259 

30 −2 0.38589 1.6248 10
4 0.38589 

30 −5 0.40834 1.5442 10
4 0.40834 

 

All these calculations where made using the 

Mathematical Support of the Scientific Work Place, 

so the precision is ensured. The results showed in 

both tables allow to say that the two values λ1 and λ2, 

obtained by different ways are equal, as it was proved 

in the last section. 

 

DISCUSSIO! A!D CO!CLUSIO! 
 

The analysis of Figures 2 to 5, for a particular 

material (organic wax), shows that the heat flux q0/t
½
 

produces a constant temperature in the fixed face. 

The obtained results are summarized in Table 3. The 

first column is the value of q0, the second one is the 

obtained result for u(0,t) from Eq. (10.2.a), using this 

q0, and the corresponding value of λ2. The third 

column is the relationship between that q0 and the 

minor value (q0=100), that is to say, it was obtained 

taking 100, as the first value. Thus, for q0=500, this 

factor is 500/100=5, for q0=1000, is 1000/100=10 and 

so on. The fourth column is the ratio between u(0,t) 

and the value of u(0,t) corresponding to q0=100. 

Finally the fifth column is the ratio between the 

fourth and second columns.  
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Table 3. q0 values and the corresponding boundary 

temperature. 

 

q0 u(0,t) C    

100 0.00010 1 1 1 

500 0.0025 5 25 5 

1000 0.010 10 100 10 

2000 0.04 20 400 20 

  

These results together with those show in Tab. 1 

and 2, validate the equivalence between the two 

boundary conditions.  

Table 3 also shows that when q0 increases, the 

temperature in the fixed face is multiplied by the 

squared ratio between the new and the old q0 (third 

column)  

This ratio only depends on q0, given that it is the 

only factor that changes in Eq. (10.2) for different 

materials. Thus, this relationship is also valid for all 

substances. 

Thus, it is proved that the two well known 

analytical solutions for the two - phases Stefan 

Problem, one for temperature boundary condition, the 

other for heat flux condition are not independent: one 

determines the other. 
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