
Ciência/Science 

Engenharia Térmica (Thermal Engineering), Vol. 6 • No 02 • December 2007 • p. 54-61 54 

NUMERICAL SIMULATION OF FLUID FLOW IN A CUBIC 

CAVITY WITH A FOUR-FINNED DISSIPATOR PLACED ON 

THE BOTTOM SURFACE 
 

 

R. F. Brito
a
, 

H. S. Alencar
b
, 

L. O. Rodrigues
c
, 

G. J. Menon
c
, 

and M. A. R.  ascimento
c
 

 

a,cUniversidade Federal de Itajubá 

Departamento de Engenharia Mecânica 

Bairro Pinheirinho 

CP. 50, Itajubá, MG, CEP: 37500-903, Brasil 

rogbrito@unifei.edu.br 

lucilener@unifei.edu.br 

genesio@unifei.edu.br 

marcoantonio@unifei.edu.br 

bAlstom Equipamentos do Brasil 

Centro de Tecnologia 

Av. Charles Sheineider, s/ nº 

Bairro Barranco 

Taubaté, SP, CEP: 12400-040, Brasil 

haarley@terra.com.br 

 

ABSTRACT 
 

Heat transfer by laminar natural convection in confined spaces is of great 

interest in the engineering field. The flow that occurs in a cavity is an 

important physical phenomenon that must be investigated, as it can be 

applied to projects of electronic components of electrical circuits with heat 

dissipators. The objective of the numerical model consists of evaluating the 

amount of heat transferred by the fins and also visualizing the velocity field 

and the isothermal lines in the fluid (air) and solid (aluminum) domains. The 

surface of the electronic component is kept at a high uniform temperature. 

The vertical surfaces are uniformly kept at low temperatures. The inferior 

horizontal surface around the electronic component and the superior 

horizontal surface are considered adiabatic. Four fins with rectangular cross-

sections are placed on the inferior surface of the electronic component. 

Solutions for low values of Rayleigh are obtained by keeping the Prandtl 

number equal to 0.70. The Computational Fluid Dynamics (CFD) is used. 

Hence, the Finite Volume Method (FVM) with Eulerian scheme is applied to 

solve the conservation equations for the unsteady state. It is assembled a 3D 

model with width wide enough to eliminate the wall effect in the flow and 

then enabling one to compare the results with 2D cases from literature. The 

present work shows that not only the increase of the Rayleigh number, but 

also the presence of the fins augments the heat transfer. 
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 OME CLATURE 
 

A area, m
2 

a, b dimensions of the surface at an uniform 

high temperature, m 

CFD computational fluid dynamics 

cp fluid specific heat at constant pressure, 

J/(kg.K) 

FVM  finite volume method 

g acceleration of gravity, m/s
2
 

Gr Grashof number 

H geometry height, m 

h heat transfer coefficient, W/(m
2
 K) 

k thermal conductivity, W/(m.K) 

L geometry length, m 

n  normal direction 

N normal direction 

Nu average Nusselt number 

NuL local Nusselt number 

P dimensionless pressure 

p pressure, N/m
2
 

Pr Prandtl number 

Q heat flux rate, W 

q heat flux, W/m
2 

Qfi heat flux rate delivered, W 

Qw heat flux rate received, W 

Ra Rayleigh number 

RAM random access memory 

RMS root mean square 

S1, …, S7 surfaces of the geometry 

SIMPLE semi implicit method for pressure linked 

equation 

T temperature, K 

t time, s 

U, V, W  dimensionless velocity components 

u, υ, w velocity components, m/s 

x,y,z cartesian coordinates, m 

X,Y,Z dimensionless cartesian coordinates 

 

Greek symbols 
 

ρ density, kg/m
3
 

θ dimensionless temperature 

τ dimensionless time 

ν kinematic viscosity, m
2
/s 

δ lenght, m 

α thermal diffusivity, m
2
/s 

µ dynamic viscosity, N s/m
2
 

β volumetric coefficient of thermal 

expansion, K
-1 
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Ω computational domain 

 

Subscripts 
 

0 average value 

c cold or contact 

f fluid 

fi fin 

h hot 

L local 

s solid 

w wall 

 

I TRODUCTIO  

 
During the last four decades, significant 

attention was given to the study of natural convection 

in enclosures subjected to heating and cooling using 

four-finned dissipators placed on a heated base. This 

was due to the occurrence of natural convection in a 

wide range of application areas that include nuclear 

reactor design, post-accident heat removal in nuclear 

reactors, geophysics and underground storage of 

nuclear waste, energy storage systems and others. 

Natural convection heat transfer in enclosures 

containing heat generating fluids with different 

geometrical parameters and boundary conditions has 

been extensively considered in the open literature. 

Several electronic equipments have been 

designed to be closed rectangular boxes with small 

openings on the bottom surface to allow natural 

ventilation. Components of electronic equipment are 

usually placed on the bottom surface of the cavity. 

They always dissipate heat at a constant temperature 

even on the standby mode. Although many works 

deal with laminar natural convective flow, some still 

consider a partially heated base. 

In the case of natural convection in a two-

dimensional domain, many works have been 

experimentally and numerically developed. 

Dong and Li (2004) carried out a study of 

natural convection inside a cavity which is crossed by 

a horizontal cylinder using the Stream function 

Method and the Boussinesq Vorticity in the 

differential equations for conservation od mass, 

momentum and energy. The effect of the material, 

geometry and Rayleigh number on the heat transfer 

was investigated considering a regime which is 

approximately permanent. 

Bilgen and Oztop (2005) conducted a natural 

convective heat transfer study in an inclined square 

cavity with isolated walls, being that one is partially 

opened. The flow is laminar and permanent with the 

Rayleigh number and the inclination angle varying 

from 10
3
 to 10

6
 and from 0° to 120°, respectively. 

Nasr et al. (2006) proposed a case similar to the 

present work where one of the vertical walls of the 

two-dimensional model is heated in a small portion at 

a constant temperature. They considered a generic 

system of cooling and heating with a permanent 

laminar convective air flow inside a cavity. It is 

observed that convective flow is strongly affected by 

the geometry. 

Bakkas et al. (2006) investigated the permanent 

laminar natural convective flow in a two-dimensional 

horizontal channel with rectangular blocks mounted 

along the bottom surface. These blocks were heated 

at a constant temperature and connected to the bottom 

surface by layers which were adiabatically isolated. 

Having Rayleigh number from 10
2
 to 10

6
 and Prandtl 

number equal to 0.7 (air), it was verified that the 

block dimensions affected significantly the 

temperature and velocity convective fields. 

Ben-Nakhi and Chamkha (2007) focused their 

work on the numerical study of steady, laminar, 

conjugate natural convection around a finned pipe 

placed in the center of a square enclosure with 

uniform internal heat generation. Four perpendicular 

thin fins of arbitrary and equal dimensions are 

attached to the pipe whose internal surface is 

isothermally cooled. The sides of the enclosure are 

considered to have finite and equal thicknesses and 

their external sides are isothermally heated. The 

problem is put into dimensionless formulation and 

solved numerically by means of the finite-volume 

method. Representative results illustrating the effects 

of the finned pipe inclination angle and fins length on 

the streamlines and temperature contours within the 

enclosure are reported. In addition, results for the 

local and average Nusselt numbers are presented and 

discussed for various parametric conditions. 

The study of natural convection in a three-

dimensional domain is still not quite explored in 

literature where works such Janssen et al. (1993) and 

Tric et al. (2000) can be found.  

Janssen et al. (1993) carried out a study of 

natural convection in a cubic cavity using the Finite 

Volume Method with permanent and transient flows. 

In the permanent flow case, the boundary layer along 

the wall was studied while in the transient regime, the 

convective flow periodicity generated by a 3D model 

was investigated. A comparison with the classic 2D 

model was conducted. 

Tric et al. (2000) studied exact solutions to the 

governing equations of natural convection of air 

inside cubic cavities which were thermally loaded by 

two opposite vertical walls with different 

temperatures and Rayleigh numbers going up to 10
7
. 

The solutions were considered exact with relative 

global errors below 0.03 % and 0.05 % for Rayleigh 

numbers 10
3
 and 10

7
, respectively. 

In the present work, permanent and laminar 

natural convection study in a cubic cavity with four-

finned aluminum dissipator placed on a bottom 

horizontal surface is carried out. Heat transfer is 

investigated based on temperature and velocity 

behaviour and on the local Nusselt number along the 

bottom heated surface of the base of the dissipater in 

contact with the bottom surface of the cavity. The 

remaining part of the bottom surface of the cavity is 
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thermally isolated. The lateral vertical walls are kept 

with an uniform low temperature and the cavity upper 

horizontal wall is thermally isolated. Figure 1 shows 

details of the geometry. The solution to this problem 

is found by the application of the Fluid Dynamics 

Calculus using the Finite Volume Method and the 

Eulerian scheme to discretize the domain in space 

and time. This is done by integrating the transport 

differential equations of mass, momentum and 

energy. The mesh has 36,194 nodes and 174,909 

elements where 160,281 are tetrahedral and 14,312 

are prismatic which are placed near the lateral 

vertical walls in order to capture the boundary layer 

effects. This mesh is used in all cases. Two cases are 

analyzed with Rayleigh numbers 10
6
 and 10

7
. 

Temperature and velocity distributions are analyzed 

over a vertical section that crosses the half part of the 

base and fins. The Nusselt number is also calculated 

along the base by ranging the Rayleigh number. The 

machine used to run all cases has a processor Intel 

Pentium 4
®
 that runs at 3.0 GHz and 2 GB of RAM. 

The time computing cost was approximately 49 

minutes for Rayleigh number of 10
6
 and 10

7
, for  

physical time of 4 s. CFD software package from 

ANSYS CFX-5.6
®
 was used. 

 

PROBLEM DESCRIPTIO  
  

Figure 1a and 1b show the geometry with 

domain Ω that is filled with air (Pr = 0.7) and whose 

base with fins made of aluminum. It is considered a 

cubic cavity where S1 and S2 are the isolated surfaces. 

S3 and S6 are surfaces that are kept at an uniform low 

temperature while S7 is at an uniform high 

temperature. The local heating is simulated by a heat 

source that is located in the middle portion of the 

base wall, S7. 

The initial condition on the entire domain Ω is 

taken for temperature θ = 0 and air velocities u = v = 

w = 0. All properties are considered constant, except 

the density on the buoyancy forces that follows the 

Boussinesq approximation. 

Figure 2a and 2b depict the mesh used in the 

computational simulation, projected over YZ plan, 

and the solid body mesh. 

 

Problem hypotheses 
  

The following hypotheses are considered: 

a) Three-dimensional domain; 

b) Unsteady regime; 

c) Laminar and incompressible flow; 

d) Viscous dissipation is neglected; 

e) Physical properties (ρ, µ, cp, k) are constant, 

except density in the buoyancy forces; 

f) No internal heat generation. 

 

x

y

z

Ω

 
 

Figure 1a. Computational domain: geometry in 3D. 

 

 
 

Figure 1b. Computational domain: dissipator 

mounted on S7 surface, with four 4 rectangular  

fins (dimensions in mm). 

 

 

 

Figure 2a. Computational mesh: in a vertical surface, 

YZ plan for x = 0.04 m, with prismatic  

(boundary layer) and tetrahedral elements. 
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Figure 2b. Computational mesh: in the aluminum 

dissipator. 

 

Governing equations 
 

With the above considerations, the conservation 

equations for air can be written as follows: 

i)  Continuity: 
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iii)  Energy: 

 

z

T
w

y

T

x

T
u

t

T ffff

∂
∂

+
∂
∂

υ+
∂
∂

+
∂
∂

 










∂
∂

+
∂
∂

+
∂
∂

ρ
=

2

f

2

2

f

2

2

f

2

pff

f

z

T

y

T

x

T

c

k
 (5) 

 

where u, v, and w are the flow velocity components 

in m/s, x, y and z are the directions in space, t is the 

time in s, ρ is the fluid density in kg/m
3
; p is the flow 

relative pressure in Pa, g is the local acceleration 

component in m/s
2
, and β is the volumetric 

coefficient of thermal expansion in K
-1

. The subscript 

f represents fluid (air).  

The conservation equation for the aluminum 

domain can be written as: 
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where the subscript s stands for solid (aluminum). 

 
 

Boundary and initial conditions 
 

They are as follows: 

i) Initial Conditions: 

for t = 0: 

 

0wu ==υ=  ( in Ω  ) (7) 

 

2

TT
TT hc

0

+
==  ( in Ω  ) (8) 

 

ii) Boundary Conditions: 

for t > 0: 

 

hTT =  ( on S7 ) (9) 

 

cTT =  ( on S3  to S6 )  (10) 

 

0
n

T
q =

∂

∂
=  ( on S1  and S2 )  (11) 

 

0wu www ==υ=  ( on S1,..., S7 )  (12) 

 

where S1, S2, S3, S4, S5, S6, and S7 represent the 

surfaces on the boundaries of the domain Ω , as 

shown in Fig. 1. 

 

Dimensionless equations 
 

In order to generalize the theorical analysis 

governed by equations 1 to 6, dimensionless variables 

are introduced: 
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oh

o

2

2

TT
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,
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−

=θ
νρ

=  (14) 

 

where τ is the dimensionless time; X, Y e Z are the 

dimensionless coordinates; U, V, W are the 

dimensionless velocity components; P is the relative 

dimensionless pressure, and θ is the dimensionless 

temperature.  

Substituting (13) and (14) in (1) to (5): 
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For the solid domain: 
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where Gr and Pr are the Grashof and Prandtl numbers 

defined respectively by the following: 
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In order to calculate the local Nusselt number, 

Fig. 3 presents the energy balance along the 

dissipator surface. One can say that the heat received 

(Qw) is equal to the heat delivered (Qfi) taking the 

aluminum part as the control volume.  

So: 

 

fiw QQ =  (23) 

 

And then:  
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where qw and qfi are the heat fluxes on S7 and the 

dissipater surface, respectively. 

Since: 
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The average Nusselt number Nu is calculated by 

the expression as follows: 
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Figure 3. Heat transfer balance along the dissipater 

surface. 

 

where kf and ks are the fluid and solid thermal 

conductivity, h is the local convective heat transfer 

coefficient, δ is a small distance from the dissipater 

bottom (δ/H = 0.025), Aw and Afi are the S7 and the 

aluminum surfaces in contact with air, respectively, 

and H* is any relevant measure to obtain appropriate 

Nu value orders. 

kf 

h 

h 

Tc 

 
Tc 

ks 

T(δ) 

δ Th 

Insulated 

Insul. Insul. 

z 

 

qfi · Afi = Qfi 

 

qw · Aw = Qw 
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The initial and boundary conditions are now 

expressed in the dimensionless form as: 

 

i) Initial conditions: 

for τ = 0: 

 

0WVU ===  ( in Ω  ) (27) 

 

2

1
0 =θ=θ  ( in Ω  )  (28) 

 

ii) Boundary conditions: 

for τ > 0: 

 

1=θ  ( on S7 ) (29) 

 

1−=θ  ( on S3,..., S6 )  (30) 
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 UMERICAL METHOD 
 

The solution of the partial differential equations 

in time and space can be solved using the 

Computational Fluid Dynamics (CFD) by Finite 

Volume Method (FVM), which is a method of 

discretization in space and in time of the entire 

domain, which can use a mesh with finite number of 

volumes (Barth and Ohlberger, 2004).  

 

 
 

 

 
 

 

 

Figure 4. Details of the control volume used in the 

Finite Volume Method (Barth and Ohlberger, 2004). 

 

In this method of discretization, the mesh can 

have two typical volume schemes: centralized face 

and centralized volume. For both schemes of control 

volume, the variables can be solved in terms of 

average values. Figure 4 shows the centered face and 

control volume used in the Finite Volume Method, as 

in Barth and Ohlberger (2004). 

The governing equations can be solved applying 

a suitable algorithm (Euler’s equations for inviscid 

flows and Navier-Stokes’s equations for viscous 

flow). In particular case of phenomena with fluid 

flows and heat transfer, it is necessary to link the 

pressure and velocity. Among the algorithms that can 

solve all variables in the same time step with velocity 

and pressure linked equation, CFD has used the 

SIMPLE method (Shaw, 1992).  

This methodology is an interactive process, 

where the error or residual is compared to a reference 

error, also named “target error”. In this way, flow and 

heat transfer simulations require the introduction of 

suitable flow and heat transfer models to guarantee a 

satisfactory convergence. 

 

RESULT A ALYSIS 
 

Through the iterative calculation using CFD, it 

was observed the convergence in relation to the 

deviation calculated by the goal error equal to 10
6
 for 

the two cases where Ra = 10
6
 and 10

7
. Figure 5 

shows the Convergence Curves for the local Nusselt 

number on S2 and S7 for Ra = 10
6
 and 10

7
.  
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Figure 5. Convergence curves for the RMS deviation 

on heat transfer rate for Ra = 10
6
 and 10

7
. 

 

It can be noticed that convergence is rapidly 

reached for lower Rayleigh numbers where the 

internal flow is significantly laminar and the viscosity 

effects are stronger. 

Table 1 shows the results for the average 

Nusselt number given by Eq. (26) at δ = 0.003 with H 

= 0.05 m, where H is the height of dissipator placed 

on the bottom surface. It can be observed that Nu 

increase as Rayleigh number goes up to 10
7
, due to 

the higher temperature gradient between the surfaces 

S7 and S8. 

To observe the effect of Rayleigh number on 

heat transfer in the cubic cavity, Figs. 6 and 7 depict 

the temperature and velocity vectors distributions 

Centralized face 

Centralized volume 

Control volume 

Point of calculation 
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plotted on the ZX plan at (x / L = 0.40; 0 ≤ y / L ≤ 1, 

0 ≤ z / H ≤ 1).  

From Figs. 6(a) and 7(a), it is noted that the 

ascending convective flow increases with Rayleigh 

number increase. For Ra = 10
6
, two opposite vortices 

of the same intensity are formed on the reference plan 

at x / L = 0.40; 0 ≤ y / L ≤ 1, 0 ≤ z / H ≤ 1, 

progressively nearer the finned surface. 

 

Table 1. Average Nusselt number for Ra = 10
6
 and 

10
7
 at the last time instant. 

 

Ra = 10
6

Ra = 10
7

Aw [m
2
] in S7 2.30E-03 2.30E-03

Ac [m
2
] in S8 8.06E-03 8.06E-03

ks (Al) [W m^-1 K^-1] 237.0 237.0

kf (air) [W m^-1 K^-1] 0.026100 0.026100

H [m] 0.12 0.12

δi [m] 0.003 0.003

Th [K] 673.2 673.2

Tc [K] 667.1 618.1

T(δi) [K] 673.1 654.1

Nu 518.8 35874.9  
 

 
 

Figure 6a. Case 1 – Ra =10
6
 at the final instant for 

contour number 100: temperature distribution, plan 

ZX. 

 

 
 

Figure 6b. Case 1 – Ra =10
6
 at the final instant for 

contour number 100: velocity vector field at = 0.012 

m, plan ZX. 

 

 
 

Figure 7a. Case 2 – Ra =10
7
 at the final instant for 

contour number 100: temperature distribution, plan 

ZX. 

 

 
 

Figure 7b. Case 2 – Ra =10
7
 at the final instant for 

contour number 100: velocity vector field at = 0.012 

m, plan ZX. 

 

For Ra = 10
6
 and 10

7
, a typical behavior takes 

place. This behavior represents the strength order of 

the ascending convective flow between the fin heated 

surface and the upper isolated horizontal surface. 

This can also be seen in Figs 6(b) and 7(b), where the 

progressive increase of the maximum velocity vector 

is noted when Rayleigh number is higher. 

One can also note that in Figs. 6(a) and 6(b), the 

isotherms find themselves in a more uniform 

distribution and deformed for Ra = 10
6
, along the fin 

and in the fluid domain, thus enhancing the heat 

transfer. For Ra = 10
7
, the heat transfer is 

predominantly featured by conductive effect, as 

depicted in Figs. 7(a) and 7(b). Significantly, for Figs 

6 and 7, the calculus indicates that the temperature 

gradient becomes stronger near the fin region as Ra 

increases. 

An analysis in other flow plans is strongly 

recommended to analyze the intensity of the vortices 

generated in the third dimension. According to Bilgen 

and Oztop (2005) and Nasr et al. (2006), the 

temperature distributions as well as the vortices 

intensities are affected by the secondary effects of the 

ascending convective flow given by the third 
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dimension of the cavity. This phenomenon implies 

the importance of the 3D study, as suggested by 

Janssen et al. (1993). 

 

CO CLUSIO S 
 

The natural convection study in a cubic cavity 

using CFD showed that: 

a) The average Nusselt number on the cavity 

base increased with the Rayleigh number increase 

due to the fact that the temperature gradient was 

higher between the heated surface and the 

temperature of the fluid domain; 

b) The ascending convective flow penetration 

from the heated surface was stronger as Ra increased; 

c) It was observed a progressive formation of 

vortices with a plume shape from the finned surface 

for Ra = 10
6
. These vortices had equal intensity and 

opposite directions. 

d) The progressive increase of the flow 

maximum velocity vector induced by convection was 

verified with the Rayleigh number increase up to 10
7
. 

In this way, with a satisfactory precision, the 

fluid dynamics calculus applied in this work is 

revealed to be a promising natural convection study 

applied to the electronic components. 
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