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ABSTRACT

The governing equations of the acoustic problem are the compressible Euler 
equations. The discretization of these equations has to ensure that the acoustic 
waves are transported with non-dispersive and non-dissipative 
characteristics. In the present study numerical simulations of a standing 
acoustic wave are performed. Four different space discretization schemes are 
tested, namely, a second order finite-differences, a fourth order finite-
differences, a fourth order finite-differences compact scheme and a sixth order 
finite-differences compact scheme. The time integration is done with a fourth 
order Runge-Kutta scheme. The results obtained are compared with linearized 
analytical solutions. The influence of the dispersion on the simulation of a 
standing wave is analyzed. The results confirm that high order accuracy 
schemes can be more efficient for simulation of acoustic waves, especially the 
waves with high frequency. 

Keywords: Acoustic wave, dispersion error, compressible flows, standing 
wave, finite-difference method, high order methods.

ANALYSIS OF DISPERSION ERRORS IN ACOUSTIC WAVE 
SIMULATIONS
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Tam and Webb, 1992, developed a finite difference 
approximation in a way that the Fourier transform is 
preserved. They obtained an optimized fourth-order 
explicit approximation with a stencil of 7 points. It was 
shown for this kind of study that the obtained 
approximation is better that explicit sixth order 
approximation, for this kind of study. They also optimized 
the time discretization, and showed outflow boundary 
conditions that are “transparent” to the outgoing 
disturbances. The results obtained by them were very 
good, showing that non-dispersive methods are important 
for numerical acoustics.

Vanhille and Pozuelo, 2000, simulate a finite but 
moderate amplitude standing acoustic wave, using 
Lagrangian coordinates. In their numerical model a third 
order partial derivative was obtained. For this derivative a 
finite-difference scheme of fifth order of truncation error 
was developed, since the role of this derivative was very 
important for the formation of the nonlinear standing 
wave. Their numerical method was validated by 
comparison with an analytical model. Their results showed 
the efficiency and the limits of the developed code.

A semi-implicit method for acoustic waves in low 
Mach number simulations is presented in Wall et all., 2002. 
The advantage of their proposed method is that the time 
step is limited only by the convective CFL condition. Their 
method is second order accurate, both in time and space. 
An analysis of their results showed that the waves 
simulated had an average dispersion error of 5%. This was 
considered by them as not an excessive dispersion error. 
Their main result is on the gain in computational 
efficiency, obtained with the semi-implicit method, 
resulting in a factor of 15 reduction about, as compared 
with an explicit method.

Spectral methods can be used to assure that all 
relevant scales are captured, but high order finite 
difference is also able to represent short length scales with 
good accuracy. Lele, 1992, emphasizes the importance of 
using high order methods schemes for first and second 
derivatives. Mahesh, 1998, presents high order finite 
difference schemes, introducing a method that, using the 
same stencil is more accurate than the standard Padé 
schemes. The disadvantage of his method is that it requires 
the solution of first and second derivatives simultaneously. 
Souza et al., 2002 and Souza et al., 2005, used high order 
compact methods for transition phenomen problems. In 
these investigated it was studied the propagation of the 
Tollmien-Schlichting waves in incompressible flows.

Ekaterinaris, 1999 developed a compact high order 
implicit method to study aeroacustics and two-
dimensional Euler equation. His results in Aeroacoustics 
showed a good agreement with the exact solution, and the 
results with the two-dimensional Euler equation showed 
that the proposed method presents good results, lowering 
the total computational time for the simulations when 
compared with other schemes for the same simulation.

Hixon, 2000, using the algebraic manipulations, 
proposed a compact finite difference scheme with eighth 
order accuracy, using 3 points stencil for the simulations of 
acoustic waves. The main advantage of the proposed 
method is that one can use the scheme for the points near 
the boundaries. Results are shown to illustrate the 
functionality of the method.

Ashcroft e Zhang, 2003, extend the factorization 
concept proposed by Hixon to a broads class of compact 
schemes using a more general derivation strategy. Rather 
than using the algebraic manipulations proposed by Hixon, 

developed an approach the combines Fourier analysis with 
the notion of a numerical wavenumber. Two schemes were 
used, one forward and one backward, giving the optimized 
prefactored compact scheme. The sum of the schemes 
recover the original central compact scheme. Their results 
showed the efficiency of the proposed methods in acoustic 
waves simulations.

Bogey e Bailly, Bogey showed finite difference 
schemes with high order accuracy, optimized for acoustic 
waves simulations, with low numerical dispersion and 
dissipation, even using 4 points per wavelength. They 
showed also selective filters that can be used to eliminate 
spurious oscillations. Runge-Kutta schemes were also 
studied in their paper, and they showed a sixth order 
scheme that presented numerical stability with CFL 
number of 1.98, that represents a gain in the computational 
time. Other proposed finite difference schemes for 
numerical simulation of linear acoustic waves can be 
found in Thomas, 1993; Zingg, 1993; Lockard 1994.

Most sound waves behave as linear waves since 
they produce pressure fluctuations in air that are very 
small. A linear waves travels through a medium such as air 
or water. Fluids such as these can be thought of as 
consisting of a large number of "particles", each of which 
consists of a vast number of molecules. Eachof these 
particles moves as the wave travels through and it passes 
the disturbance on to its neighbors. However, these small 
parts of the medium do not travel with the wave. Waves 
transfer energy without transferring matter.

In the current work, the focus is on the evaluation of 
discretization error. The tests involved the simulation of 
one-dimensional standing wave in a periodic domain. 
Standing wave may be created from two waves, with equal 
frequency, amplitude and wavelength, traveling in 
opposite directions. Using superposition, the resultant 
wave is the sum of these two waves.

The discretization error was analyzed and tested for 
different space discretization schemes, namely, a second 
order finite-differences, a fourth order finite-differences, a 
fourth order finite-differences compact scheme and a sixth 
order finite-differences compact scheme. Both centered 
and non-centered schemes were analyzed.

The paper is organized as follows: in section 2 the 
formulation for the standing wave is shown. The equations 
adopted are the Euler equation. The numerical method 
adopted is shown in section 3. In the same section an 
analysis of the spatial discretization of the finite difference 
methods used is done. In section 4 numerical results for 
various test cases are presented. The conclusions about the 
discretization errors on Computational Aeroacoustic are 
shown in the last section.

FORMULATION

In the current study, the governing equations are the 
compressible, isentropic, one-dimensional Euler 
equations. They consist of the momentum equations for the 
velocity component (u) in the streamwise direction (x):
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L
where the terms with an over-bar are dimensional terms,  

      is the reference length,      is the free-stream velocity 
and       is the density of the undisturbed flow.

We can also decomposed the flow in a temporal 
mean with a small disturbance:
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where the index       indicates the temporal mean flow                             
       and  indicates of the small disturbance.
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Second order explicit derivatives:
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Fourth order explicit derivatives:
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of the first derivative of    is           . However, the numerically 
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Figure 3. Results of standing wave with second order 
approximation.
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Figure 4. Results of standing wave with fourth order 

explicit approximation.
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