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ABSTRACT

In this article, improvements in a recently developed discrete ordinates method — the two-
component method - are reported. The method solves conservative and non-conservative
radiative heat transfer problems with anisotropic scattering on a multislab domain irradiated
from one side with a radiation beam. The beam here consists of a monodirectional (singular)
stream and of a continuous (regular) distribution in angle. Specifically, the computational
efficiency of this two-component method has been increased with the help of new periodic
relations for the coupling coefficients that appear in the numerical component of the method.
With these periodic relations, memory usage requirement for storing the (usually large
number of) coupling coefficients has been halved, while saving computer time from
unnecessary computation of redundant coefficients. The increased efficiency of the two-
component method has been illustrated with numerical results and discussion of a model
problem in shortwave radiative transfer.

Keywords: radiative heat transfer, discrete ordinates, mixed beams, multislab
problems, computational efficiency

NOMENCLATURE @w  single scattering albedo, dimensionless
a angular component, dimensionless Subscripts
f constant in the particular solution component
of the intensity, Wm2sr! i relative to ordered set
g coefficient in the ESGF equations, Wm2sr!  j relative to layer edge and ordered set
1 frequency-integrated intensity of the V4 relative to a component in a Legendre
radiation field, Wm™sr! expansion
L order of Legendre expansion, dimensionless m  relative to discrete direction
N order of quadrature set, dimensionless N relative to order of quadrature set
P Legendre polynomial, dimensionless n relative to discrete direction
q radiative heat flux, Wm™ p relative to particular solution
R number of layers, dimensionless R relative to right boundary and rightmost layer
S scattering source, Wm2sr! r relative to layer number and layer edge
t relative to discrete direction
Greek symbols u relative to discrete direction
0 relative to left boundary
o expansion coefficient in the homogeneous
solution component of the intensity, Wm?sr! Superscripts
B Legendre component of the scattering phase
function, dimensionless d  relative to diffusive problem
y  boundary function for the intensity, Wmsr! r relative to layer number
At optical thickness, dimensionless T relative to transpose matrix
o) Dirac distribution, dimensionless u relative to uncollided
0  coefficient in the ESGF equations, 0 relative to left boundary and zeroth order
dimensionless +  relative to downwelling heat flux
u  cosine of the polar angle, dimensionless — relative to upwelling heat flux
v separation constant, dimensionless
T optical depth, dimensionless INTRODUCTION
¢  angular moment of the intensity, Wm
Q  multislab domain, dimensionless A two-component method for solving both
w  angular weight, dimensionless conservative and non-conservative discrete

Engenharia Térmica (Thermal Engineering), Vol. 4 - No. 2 - October 2005 - p. 181-189 181



|CIENCIA/SCIENCE]

ordinates (S,) radiative heat transfer problems
defined on a multislab domain irradiated from one
side with a beam of radiation has been recently
developed by the author (de Abreu, 2003; de Abreu,
2004a). The beam is allowed to be composed of a
monodirectional (singular) stream and of a
continuous (regular) distribution in angle. The two-
component method starts with a variant to the
singular-regular Chandrasekhar technique
(Chandrasekhar, 1950) for the decomposition of
the target problem into an uncollided problem with
one-sided singular boundary conditions and a
diffusive problem with regular boundary
conditions. Solution to the uncollided problem is
fairly easily obtained but, solution to the diffusive
problem is not usually so. Then, a standard S
approximation (Lewis and Miller Jr., 1993) has
been considered to the diffusive problem, which
has been solved with an improved spectral nodal
method free from spatial truncation error (de Abreu,
2003; de Abreu, 2004a). In addition, the slab-
geometry equivalence between S and spherical
harmonics (P) formulations (Duderstadt and
Martin, 1979) has been used to generate an
angularly continuous approximation to the solution
of the diffusive problem. Finally, uncollided and
diffuse solutions have been composed to give an
approximate solution to a target problem.

In this article, improvements in this two-
component method are reported. Specifically, its
computational efficiency has been increased by
reducing the storage and the number of systems
for the determination of the coupling coefficients
in the auxiliary equations of the spectral nodal
method used here for the solution of the S version
of'the diffusive problem. Increase in computational
efficiency is achieved by using periodic relations
involving the aforementioned coupling
coefficients. The increased efficiency of the method
is illustrated with numerical results for a model
problem in shortwave radiative transfer.

TARGET PROBLEM AND ANALYSIS

In this section, the target problem that
represents the class of radiative transfer problems
dealt with in this article is introduced and analyzed.
Since most of the related discussion can be found
in earlier work (de Abreu, 2004a; de Abreu, 2004b),
presentation here will be brief. The equation of
transfer with arbitrary (Legendre) order of
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anisotropic scattering of the form considered here
is shown below:

W e + 1t = Stteie 0= [0 -1 5 <], (1)

where 7T is the optical variable defined on a
multislab domain € with no reemitting boundaries
denoted by T, (left) and T, (right), respectively;
W is the cosine of the polar angle defined by the
direction of the propagating radiation and the
positive t-axis. The quantity I(t, u) is the
frequency-integrated intensity of the radiation field
in the u direction at optical depth T and S(t, W) is
the scattering source function given by:

State, =S 20 B 0 i dd PROIE) (2)

The quantity @(t) is the single scattering
albedo at depth t; (2/+1)B,(7) is the /th-order
component of the Legendre expansion of the
scattering phase function and P (u) denotes the
(th-degree Legendre polynomial. We assume that
the multislab domain Q consists of R contiguous
and disjoint layers of homogeneous material each,
i.e. the quantities w(t) and B (1), for all /, are
piecewise constant functions of T on L. Equation
(1) is subject to the boundary conditions

It pp=1 o(u—p )+ (>0, 1 >0,

I(TR,—,u)=0,,u>0 3)

where I is a non-negative real; u, is the cosine of
the polar angle defining the direction of incidence
of the monodirectional component of the beam of
radiation upon the left boundary of the multislab
domain Q; the symbol § is to denote a Dirac
distribution and y (1), u > 0, is a nonnegative
function of u representing the angularly continuous
part of the incident beam of radiation.

Equations (1)-(3) define the (mathematical)
target problem representing the class of radiative
transfer problems dealt with in this article.

Following a decomposition technique
introduced by Chandrasekhar (1950) in solving a
basic problem in radiative transfer in planetary
atmospheres, the target problem (Egs. 1-3) has been
decomposed into the uncollided problem
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y%["(n’,y+l"(n,y=0,re Q-1<5u<l, 4)

with the left singular boundary conditions
I =1 (u—p ) 1"t ,—)=0,u>0,u >0, (5)

and the diffusive problem

ﬂail"(mh“ (=

S 20+ 1) w0 (uufdu U ) ()

=0

+s"(tu)te Q —1<u<l,

with the regular boundary conditions

(e =y 1’ ,~ =0, 1u>0, (N
so that Iz, =I"’(rr,,u+ld(rr,,u)ro STSTR,—]S,USI.
The quantity

u w(TT u
" (T u=——— 2(24+Uﬁ (t7) (ﬂﬂjdﬂ Pa)l'ey)  (8)

=0

in Eq. (6) is a depth-dependent anisotropic source
given in terms of the solution /'(7, u) to the
uncollided transport problem (Egs. 4-5).

Solution to this problem is fairly easily
obtained (de Abreu, 2004a) and has the closed form

It =1 o(u - uﬂ)eXP[— i(r - rﬂ)},
U

©
I"(tt—w)=0,7€ Q u >0,,uo > 0.

Substituting the closed form solution (Eq.
9) into the source (Eq. 8) yields:

w(tr,

s (tr,u= ]exp[——(r 1)} 5

w (10)
Y20+ 1) (1) () (1)

=0

Decomposing the multislab domain £ into
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its R contiguous and disjoint homogeneous
subdomains (layers) yieds the local (layer-level)
diffusive equations:

ﬂ%lj’(",wlj’(mw

0 1
jg,(zul)ﬁhf’/mi A PEOT' )+ (g1

T <t<t,r=1:R-15u<l,

r—

. d _ d —
with 17z .=y () I (t .~ =0, u>0, and
with intensity continuity conditions at layer
interfaces, i.e.,

e =1 0 gy 1<u<l,j=1:R=1, (12)
JoJ JrJ

where T, j = L:R-1, is to denote the jth layer
interface. Considering a standard S, approximation
(Lewis and Miller, 1993) to the local equations (Eq.
11) in the form:

d
I —I:jm(n+

I (rr=
d r,m(

= (13)

where ¢ (rrz]d(rr, ) and s" (zt=s"(1r, ).
rm ¥ m rm r nt

Solution to the S equations (Eq. 13) can
be expressed in terms of a homogeneous solution
and of a particular solution in the vector form

N
Ij(n: Z;amlfi(rr+ I:’p(rr)rH << T, (14)

where

Jj(n = [1:’1(11), ;12(‘[1)... ,I:’N ()" ; (15)
o, 1= 1:N, are (open) scalars depending upon
boundary/interface conditions;

19 (rr= []“’v I(rr), d (T0-. e N(rr) "

i:I:N,rr_I S‘[S‘[r, (16)
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are the elements of a vector basis for the null space
of the local S radiative transfer operator

d @ 7,
{umd[+1}(o )—72(2“1)8[’,‘

=0

Plalhl)za)”[;wﬂ) (.) ’ ( l 7)

and

I = [I' (), (.10 ()" (18)

The entries of vector (Eq. 16) are either
exponentials given by:

d _ T Tr,i
1Y (trt=a (v )exp s
rLm rm ri v

i (19)
T STSTr,iZI:N, m=1:N,
or first-degree polynomials in T of the form:
(Tr B T) + 'um — 1N
s ac-p )t (20)
and
(T -t 7]) 'um — 7.
g aea-p T

withAz =7 -7 and B |<1.

It should be noted that the quantities 7,_, 1=
1:N, in the exponentials (Eq. 19) are appropriate
optical depthsand v_anda_ (v, ), are the separation
constants and the angular components of the
exponential solutions (Eq. 19), respectively.

Polynomials (Egs. 20-21) were used as
elementary solutions of the homogeneous version
of Eq. (13) for the degenerate case of conservative
layers (Chandrasekhar, 1950; de Abreu, 2004a). A
numerical scheme for determining the separation
constants and angular components is fully
described in an earlier work of the author (de Abreu,
1998), while the optical depths 7 ,i=1:N, may be
found in a more recent work (de Abreu, 2004a).

The entries of vector (18) are given by the
exponential functions

T

L of™=1, ext{—u} T sTsTm=LNG(22)

0
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The determination of the constants
f ,m= L:N, in the exponential functions (Eq. 22)
is reported in detail by Siewert (2000).

ATWO-COMPONENT METHOD

The method described in this section is a
conjugation of basic relations from more general
results in the theory of radiation transport and
spectral nodal methods recently developed by the
present author and former collaborators.

The approximate solution to the target
problem proposed here is a distribution on T and n
of the form

_qu d _
IN(n,y—I (n,ﬂ+1N_l(n,y)r()SrSrR, 1<u<l, (23)

where the second term on the right-hand side denotes
the spherical harmonics (P, ) approximation
(Duderstadt and Martin, 1979; Lewis and Miller Jr.,
1993) to the solution of the local diffusive equations
(Eq. 11), which is given by:

}50z+/)d( P

(24)
T <t=t,-I1<u<l,r=I1R

r=1

The quantities

N
¢7:{/(TT= Zwtf’/('ur)lrdr(n rrfl S T S Tr’ "= IR’ (25)
W Py s

are the P, angular moments of the diffuse
component of the intensity.

As the name implies, the two-component
method has two ingredients: a numerical
component and an analytical component. The

numerical component is to provide layer-average

T

w0 _ 1
lrj’m—; I? (zrde,m=1:Ny=1I:R, (26)

T
r=1

and layer-edge values for the entries of the S
solution vector (Eq. 15) without having to
determine the scalars o, r=1:R, i = 1:N. The
numerical component is thus suited to radiative
transfer problems where the quantities of interest
are, for example, the angular distribution of
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radiation leaving the multislab domain and angle-
integrated layer-edge quantities such as radiative
heat fluxes (Chandrasekhar, 1950; Thomas and
Stamnes, 1999).

The analytical component of the two-
component method is to reconstruct the
approximate solution (Eq. 24) by solving a system
of linear algebraic equations for the scalars o, in
the S solution (Eq. 15). Inputs to the system are
layer-edge values supplied by the numerical
component. The analytical component is to be
applied when the intensity of the radiation field
I, (t, ) at any depth 7 and direction p is sought.
Both components are briefly described below.

The numerical component of the two-
component method is a numerical method
designed for solving the S diffusive problem
(Eq. 13) with no optical truncation error. It is an
extension to anisotropic scattering of arbitrary
order and depth-dependent anisotropic sources of
the spectral Green’s function (SGF) method for
neutron transport problems (Barros and Larsen,
1990). For this reason, it is referred to as the
extended spectral Green’s function (ESGF)
method.

The ESGF method has two main
ingredients: one is standard and the other is non-
standard. The standard ingredient is the derivation
of radiative balance equations on each layer of
the multislab domain Q, i.e.,

m [d _[d

Y419 =
A T . r—1,m .
r

s ,r=1:R,m=1:N,

where

, M T T (28)
s —lexp| ——L |—exp| ——— ||,
o ATr #, #,

1s the discretized source term. The non-standard
ingredient is the derivation of the ESGF auxiliary
equations
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N2

N
I =Y0 + Y 0 :
rm ~ Fyinu r lLu weTl ¥y rl r,m (29)
r=1:R,m=1IN,

where the layer-dependent coefficients 6, andg
are determined so that the analytical solutlon (Eq.
14) does satisfy the ESGF auxiliary equations (Eq.
29), for arbitrary scalars ¢ . and for the entries of
vector (Eq. 18) given by the exponential functions
(Eq. 22). Discussion of the ESGF auxiliary
equations (Eq. 29) is left to the next section.
Equations (27) and (29) constitute the
system of discretized equations of the ESGF
method. Solution methods for this system are
discussed elsewhere (Barros and Larsen, 1990).
The analytical component of our two-
component method is a local (layer-level) analytical
reconstruction scheme of the approximate solution
(Eq. 24). It is based upon solving a local system of
N linear algebraic equations whose unknowns are
the scalars o, 1, r fixed, 1= 1:N. Inputs to the system
are the layer-edge intensities that are incident upon
the layer of interest (de Abreu and Barros, 1994).
These layer-edge intensities are supplied by the
ESGF method. More details can be found in a
recent work of the author (de Abreu, 2004a).

INCREASING THE EFFICIENCY WITH
PERIODIC RELATIONS

The coefficients 6 andg ,r=1:R,m=
1:N,u=1:N, in the ESGF equatlons (Eq 29) follow
from a standing condition — the open form (Eq.
14) satisfies Eqgs. (29) for arbitrary scalars ¢, r =
1:R, 1= 1:N, and arbitrary constants f 1= 1:R, m
= 1:N, in the exponential functions (Eq. 22). From
this condition (de Abreu, 2003; de Abreu, 2004a),
the coefficients g _,r=1:R, m=1:N, can be found
to be given by:

and the N coefficients 0 (rand m fixed, u varying
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from 1 to N) are found to satisfy the system of N
linear algebraic equations

v )

rjorm rj oy

(9
my rmu ru r,] (31)

oQ
S
o
|
2"
N
[N

. u=N72+1
r

TR 0 i = 1:N,
exP Vv 2 rnli/ar,11(vrj)’] -

for anon-conservative layer (0 <@ <1), and the system

i .

— =

[2 Arr(z—/f”)}

N2

$o [t |,
S| AT (1B, )

ul H
2 0
w=nz+s ™" Afr(] - ﬂ/,r)

Lo AL
2 A (1-B, )|
N2
3] —
u=1 i AT '(1 - ﬁ“,)

X K,
R [] Az (1=, J

(32a)

(32b)

and

T -1 T, T
exp ! " _ exp r- " —
v v

S SATE
exp| — Y 20 a (v )+
‘v rmu ru rj
. u=
1

T -1 |
exp| — 2 0 a (v ),j=3:N,
V N2+ 1 rmu ru rj

(32¢)

-
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for a conservative one (@, = 1). Upon substitution
of the exponential solutions (Eq. 19) into the
homogeneous version of Egs. (13) and from a parity
analysis of the resulting equations (Siewert, 2000;
de Abreu, 2004a; de Abreu, 2004b), it is not difficult
to show that the constants v . appear in % pairs of
numbers and that the angular components satisfy
the relationa_ (v.) =a__ (v ), for all r, m and 1,
where the lowercase subscripts —m and —i are to
denote the discrete direction —u_ and the separation
constant —v . , respectively. Next, a parity analysis
of the systems of Egs. (31) and (32) with the help
of the above results is performed, beginning with
Eq. (31) for non-conservative layers. Let m vary
only from 1 to N/2 in Eq. (31), so that we may
licitly define a system for fixed r and m+N/2 (<
N). Using the above relation for the angular
components, and considering the parity of the
separation constants, the system for fixed r and
(m+N/2) can be written in the form:

v a (v )

r=j  rm+N2 r-jl g

T - N2
’ R o
ex i 9rm+N2u ru r j)+ (33)
rﬁj "=
T —T N
r r=j Z
ex v - 9rm+N2uaru(vr j)j - 1 N
rmj pe=N/2+1

The optical depths 7, j = 1:N, are chosen
(de Abreu, 2004a; de Abreu, 2004b) so that

== (34)

\4 v ?

implying that

= - (35)

Upon substitution of Egs. (34) and (35) into
the system of Eq. (33), and noting thata__..( v.)
=a_ (v,) and that a (v.)=a.(v,). the system of
Eq. (33) can be written in the form:
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v )

vV a
rjonm ol g

T ; - T |N2
r— rj
ex, 7 v )+
p v rom+N2u +N2 rn( r,])

(36)
N
, 27_” 0r,m+N2‘u -N72 aml (vn/’ ))

T —T .
r rj
exp
v 1=N;
rj

j=1IN.

Termwise comparison of systems of Egs.
(31) and (36) leads to the periodic relations of
period N/2

Pt pu+N/2,0+ N, 2’

p=1:N:-Nb=1:N:N, (37)

and

Fnn r,m+Nf2,u—Nf2’

(38)
m=1:N/2,u=N/?2+I:N,

for the coupling coefficients in Eqs. (29). The
periodic relations (Eqgs. 37 and 38) show that the
coupling coefficients 6 ., for m = N/2+1:N,
correspond to those for m = 1:N/2. Since the
coefficients 6  are solutions to systems of linear
algebraic equat10ns for fixed r and m, the N/2
systems associated with m = N/2+1:N do not need
to be solved, for their solutions are corresponding
solutions to systems associated with m from 1 to
NJ/2. Therefore, the periodic relations (Eqgs. 37 and
38) have two attractive features. First, they reduce
computer memory requirements, for half of the
coefficients 6 (m = N/2+1:N) does not need to
be stored. Second they save computer execution
time, since there is no need to solve systems for
determining the coefficients 6 form= N/2+1:N.
So, the periodic relations (Egs. 37 and 38) are likely
to increase the computational efficiency of our two-
component method. The same periodic relations
can be obtained from termwise inspection of the
system of Eq. (32) and the conservative counterpart
of the system of Eq. (36).
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A TEST PROBLEM

The increased efficiency of the two-
component method is illustrated with numerical
results for a test problem relevant to the transfer
of shortwave radiation in a vertically
heterogeneous atmosphere. It should be noticed
that the numerical results reported here come from
the execution of a FORTRAN program on an
IBM-compatible PC (1.4 GHz-clock Intel
Pentium 4 processor and 256 Mbytes of RAM)
running on GNU/Linux, version 0.2. The
executable file has been generated with the g77
GNU Fortran package, release 2.95. The
execution (CPU) times reported here were
generated with the TIME GNU internal routine,
option —S.

The test problem is based on a six-layer
model for a stratified atmosphere described in
a work of Devaux et al. (1979). Each of the
six layers has the same scattering law but the
single scattering albedo is allowed to be
different in each layer. The optical thickness
At_and single scattering albedo @, for each
layer are provided in Tab. 1. The scattering
law is approximated by the L = 8 scattering
phase function data given in Tab. 2. The
atmosphere is illuminated with a mixed beam
having a normally incident component and a
linearly anisotropic diffuse component. The
boundary data for this six-layer model problem are
7,=0,7.=21, 1,=05,u =1andy()=u u>0.

In Tab. 3, the layer-edge results for
converged S, downward (q+) and upward (q-)
radiative heat fluxes (Chandrasekhar, 1950;
Thomas and Stamnes, 1999) are presented. Since
no approximation has been introduced in the
derivation of the periodic relations reported in the
previous section, the numerical results in Tab. 3
are, as expected, the same as those tabulated in de
Abreu (2003).

Table 1. Layer thickness and single scattering
albedo

r At, W,
1 1.0 1.0
2 2.0 0.70
3 3.0 0.75
4 4.0 0.80
5 5.0 0.85
6 6.0 0.90
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Table 2. Scattering phase function data
/ Q0+1)B,
0 1
1 2.00916
2 1.56339
3 0.67407
4 0.22215
5 0.04725
6 0.00671
7 0.00068
8 0.00005

Table 3. Results for radiative heat fluxes (Wm)

4200(T;) d200(T;)
74=0 5.235972 0.994869
7, = 4.671763 0.430660
,=3 1.481298 0.168251
73,=6 0.309292 0.046167
7, =10 47609 x 10> 9.4260 x 10
5= 15 6.4262x 10 1.7057 x 10
1o =21 83764 x 10°* 0

The expected behavior of both downward
and upward shortwave radiative fluxes — a
decreasing function of optical depth — for a
stratified planetary atmosphere with a dark surface
can be seen in Fig. 1. This happened because the
atmosphere is a purely absorbing/scattering
participating medium for shortwave radiation.

1.0E+01
1.0E+00 -

1.0E-01 -
m Down
1.0E-02 - O Up

1.0E-03 -

1.0E-04 -

o 1 3 6 10 15 21

Figure 1. Downward and upward radiative fluxes
(Wm) through the stratified atmosphere

In Table 4, computer memory and
execution times for the runs with (case 1) and
without (case 2) the periodic relations (Eqgs. 37 and
38) are shown. It is apparent from the savings in
computer memory and execution time that the
periodic relations increased the computational
efficiency of the computer code version of the two-
component method. The reduction in execution
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time is relatively modest, as compared to the
memory one, because a considerable fraction of
the CPU time is used up for computing the
separation constants and the angular components
in the exponentials (Eq. 19).

Table 4. Computer memory and execution time

Memory (Kbytes) CPU (second)
Case 1 184.7 115.5
Case 2 316.7 146.4
CONCLUDING REMARKS

The periodic relations, Egs. (37) and (38),
increased the computational efficiency of the two-
component method without degrading its numerical
accuracy. These periodic relations are exact in the
following sense: if the S equations (Eq. 13) were
to exactly describe the transport processes for the
diffuse component of the radiation in the multislab
medium, then the two-component method would
generate exact solutions for the diffuse component
of the intensity of the radiation field, with or
without the periodic relations.

The periodic relations neither improve nor
corrupt the numerical results generated by the two-
component method. It has also been noted that the
periodic relations are in close connection to the
concept of discrete Green’s functions and response
matrices for boundary layer sources (Barros and
Larsen, 1990; de Abreu, 2004b). This will be
addressed in a forthcoming article.

REFERENCES

Barros, R. C., and Larsen, E. W., 1990, A
Numerical Method for One-Group Slab-Geometry
Discrete Ordinates Problems with no Spatial
Truncation Error, Nuclear Science & Engineering,
Vol. 104, pp. 199-208.

Chandrasekhar, S., 1950, Radiative
Transfer, Oxford University Press, London.

de Abreu, M. P., and Barros, R. C., 1994,
An Analytical Reconstruction Scheme for the
Dominant Solution of One-Speed Slab-Geometry
S, Eigenvalue Problems, In: The Fifth Brazilian
Nuclear Energy Society Meeting, Vol. I, Rio de
Janeiro, Brazil, pp. 201-205.

de Abreu, M. P., 1998, On the Spectrum of
the One-Speed Slab-Geometry Discrete Ordinates
Operator in Neutron Transport Theory, Annals of

188 Engenharia Térmica (Thermal Engineering), Vol. 4 - No. 2 - October 2005 - p. 181-189



|CIENCIA/SCIENCE]

Nuclear Energy, Vol. 25, pp. 1209-1219.

de Abreu, M. P., 2003, A Mathematical
Method for Solving Mixed Problems in Multislab
Radiative Transfer, Journal of the Brazilian Society
of Mechanical Sciences and Engineering (accepted
for publication).

de Abreu, M. P., 2004a, A Two-Component
Method for Solving Multislab Problems in
Radiative Transfer, Journal of Quantitative
Spectroscopy and Radiative Transfer, Vol. 85, pp.
311-336.

de Abreu, M. P., 2004b, Mixed Singular-
Regular Boundary Conditions in Multislab
Radiation Transport, Journal of Computational
Physics, Vol. 197, pp. 167-185.

Devaux, C., Grandjean, P., Ishiguro, Y., and
Siewert, C. E., 1979, On Multi-Region Problems
in Radiative Transfer, Astrophysics and Space
Science, Vol. 62, pp. 225-233.

Duderstadt, J. J., and Martin, W. R., 1979,
Transport Theory, John Wiley & Sons, New York.

Lewis, E. E., and Miller Jr., W. F., 1993,
Computational Methods of Neutron Transport,
American Nuclear Society, Lagrange Park, IL,
USA.

Siewert, C. E., 2000, A Concise and
Accurate Solution to Chandrasekhar’s Basic
Problem in Radiative Transfer, Journal of
Quantitative Spectroscopy and Radiative Transfer,
Vol. 64, pp. 109-130.

Thomas, G. E., and Stamnes, K., 1999,
Radiative Transfer in the Atmosphere and Ocean,
Cambridge University Press, New York.

Abreu On Increasing the Efficiency of a Discrete...

Engenharia Térmica (Thermal Engineering), Vol. 4 - No. 2 - October 2005 - p. 181-189 189





