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ABSTRACT

The phenomenon of ablation is a process of thermal protection with several applications,
mainly, in mechanical and aerospace engineering. Ablative thermal protection is applied
using special materials (named ablative materials) externally on the surface of a structure
in order to isolate it against thermal effects. The ablative phenomenon is a complex process
involving phase changes with partial or total loss of the material. So the position of the
boundary is initially unknown. The governing equations of the process form a non-linear
system of coupled partial differential equations. The one-dimensional analysis of an ablative
process on the plate is performed by using the generalized integral transform technique —
GITT for solution of the system of governing equations. By application of this solution
technique, the system of partial differential equations is transformed into a system of
infinite ordinary differential equations that can be solved after the truncation of that system
by numerical techniques codes available. The plate of finite thickness at constant properties
is subjected to a time-dependent prescribed radiation heat flux at one face, initially with a
uniform temperature T, and insulated on the other face. After an initial heating period,
ablation starts at the heated surface through melting and continuous removal of the plate
material. The results of interest are the thickness and the loss rate of the ablative material.
The obtained results are compared with available results from other solution techniques in
the literature.
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NOMENCLATURE X dimensionless coordinate, K x’
X dimensional coordinate
A, B heat flux constants
C, D  heat flux constants Greek symbols
c* heat capacity per unit volume
¢, specific heat o absoptivity
E,  radiantenergy ' . o thermal diffusivity
E, F G constants defined in the analytical solution € emissivity
by the GITT. 0, eigenfunction of the ablation period
H* heat of ablation . 1 .
.. n modified auxiliary coordinate, n=1—x

K thermal conductivity , : ,

. n, width of ablative material

(K ) characteristic length A wavelength which energy is emitted
L thickness of the slab A eigenvalue of the ablation period
N total number of elemental u, eigenvalue of the preablation period
0 dimensionless heat flux, I‘Téf* v inverse of Stefan number, (T, -T)

0

q” dimensional wall heat flux : . (7"-1)

¢ . . 0 dimensionless temperature, -
T dimensionless temperature (T, -1))
T, initial temperature o' specific density
T"” melting temperature .
r dimensional time T dimensionless time, */;*
t” characteristic time, K /. _ _ )

i} ) ) @ T dimensionless reference time,
t time at the instant when melting starts
t’ reference time . dimensionless time when melting just
. _dS(1) t

1 ablation speed, dn,(7)/dt = o starts, %
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v, eigenfunction of the pre-ablation period
Subscripts
Av average potential
index for dimensionless space
Jj index for dimensionless time
m melting of the materials
Superscripts
0 integral transform preablation period
g dimensionless temperature ablation period
0 integral transform ablation period

INTRODUCTION

The interaction between a particular
material and the gas boundary layers is, in general,
a complicated process. The least interaction occurs
for those materials which melt and flow without
evaporation; consequently this class of materials
is firstly considered. Though melting materials are
probably the least interesting from a practical point
of view, an understanding of melting is fundamental
to an overall understanding of the ablation problem.

Very little coupling exists between the
flowing liquid layer and the external gas boundary
layer, especially if the liquid velocity is small
compared with the external gas velocity and the
melting temperature is much less than the gas
stagnation temperature. The heat transfer, shear and
pressure distribution can then be regarded as known
and equal to their values for a solid boundary at
the melting temperature.

The ablation phenomenon is a process of
thermal protection with several applications,
mainly, in mechanical and aerospace engineering.
Ablative thermal protection is applied using special
materials (named ablative materials) externally on
the surface of a structure in order to isolate it against
thermal effects. The ablative phenomenon is a
complex process involving phase changes with
partial or total loss of material. Thus, the position
of the boundary of the protection material not yet
removed is initially unknown.

The diagrams shown in Figs. 1 and 2
illustrate the ablation phenomenon. In Fig. 1 the
following processes are presented:
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1. Convection heat transfer in the boundary layer
that represents the main thermal load;

2. Radiation heat transfer;

3. Conduction heat transfer in the virgin material
that should satisfy the temperature approach
limits in the substructure or in the thermal shield
on the structure;

4. Resin decomposition;

5. Fibers decomposition;

6. Flow of the produced gas through the
residuals;

7. Retreat of the surface;

8. Radiation in the wall;

9. Shock in the boundary layer;

10. Combustion in the boundary layer.

Analytical, numerical, as well as
analytical-numerical solutions have been found
for this kind of problem. In a two-dimensional,
geometry the method of Approximate Integral
Balance, was presented by Hsiao and Chung
(1983). The physical and mathematical models
of the ablation process have been presented by
Lacaze (1967). The solution of the diffusion
problem with variable coefficients was studied
by Cotta and Ozisik, (1987). A generalized study
of the ablative phenomenon was done by Adams
(1959) and Sutton (1982). The using of the
Generalized Integral Transform Technique
(GITT), was presented by Diniz et al. (1993);
Kurokawa et al. (2003); Gomes et al. (2004).
They solved one-dimensional problems of heat
diffusion for several geometries. Vallerani (1974)
applied the Integral Method for problems of
simple classes of ablation. The Classical Integral
Transform Technique for linear problems was
presented by Mikhailov and Ozisik (1984). The
GITT is a generalization of that technique for
non-linear problems.

In the present work the one-dimensional
analysis of the ablative process in a Finite Plate
has been carried out using the Generalized
Integral Transform Technique as an analytical
tool for solution of the differential partial
equation, considering the isolated internal side
and the external side subject to a prescribed
unsteady heat flow considering the radiation heat
transfer effect. In the solution of the problem the
value of interest is the temperature field in the
material.
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Figure 1. [llustration of ablation phenomenon
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Figure 2. Physical representation of the ablation
process involving the melting of the ablative
material

THEORETICAL ANALYSIS

The radiation heat flux in a Finite Plate of
finite thickness with constant physical properties
and a (Absorptivity) = & (Emissivity) is
considered. Initially, the plate is subjected to a
temperature 7', its external surface is submitted
to a prescribed unsteady heat flux and the internal
surface is thermally insulated. This problem is
solved in two steps: 1) the heating of the material
until the phase change temperature is reached
(preablation period), and 2) the ablation period
that start at the heated surface through melting
and continuous removal of the plate material
(ablation period).

Figure 3 shows the plane geometry with a
change of coordinate, from X to 1 coordinate,
carried out to simplify the computational
implementation. QJ(t)is the prescribed heat flux,
S(t) is the position of the ablative front in X-
coordinate and 7, (1) (shaded area) represents the
width of the ablative material that has not yet been
consumed.
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Figure 3. Geometry and coordinates system for
ablation in a finite plate

Description of the Problem for the Balance of
Energy

An ablating finite plate is considered an
ablating finite plate which is fed into the plane
x" = 0. Figure 4 shows a radiation heat flux (¢,
directly on the boundary. An asterisk indicates
dimensional variables.

q: _’ %
=0

T\:‘=Ts "«

*
X —>c0

58

Figure 4. Schematic diagram of an ablating (and/or
melting) surface. The melting rate is controlled by
radiant energy input from an external source

Preablation Period

90(x,7) _ 9*0(X,7)
ot x>

0<X<l,0<2<1, (D)

+20(1)Ey(x),

with initial and boundary conditions:

6(X,00=0, 0<x<1 ()
B 00(x,7)

oK T 0(r) 3)
00(x,7)
—aX . =0,7>0 4)

and the function E (X) has been replaced by the
Beer-Bouguer factor, exp(-X).
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Equations (1-4) define a standard radiation
heat transfer problem, which is readily solved as a
special case of the more general formulation
presented by Mikhailov and Ozisik (1984).

The following auxiliary problem with
t-dependent quantities is chosen,

P o () =0 )
0<X<1,0<z<1,
subject to the boundary conditions:
a”a’)((XLo,X:o 6)
and
al/a/—)(j() =0,X= (7)
which is readily solved to yield:
4,@)=in 8)
wi(X)=cos[u, x| ©)

Equation (5) allows the definition of the
following integral transform pair
Integral Transform:

~ X=1
0(c)= [, (X)pX,7)x (10)
X=0
Inversion Formula:

H(X,T)=§l%é(f) (11)

=1 1V

6 and 0 are the terms that represent, respectively,
the transformed integral and its inversion formula
of the preablation period. N, is the norm of the
eigenfunctions, defined as

N,-(f)=XI:§)1/,2(X)dX (12)

Using the GITT, it is possible to solve

Gomes et al. Radiation Heat Transfer With Ablation...

Eq. (1) together with the boundary conditions, Eqgs.
(2)-(4). Thus, Eq. (1) can be solved to find the
following temperature distribution:

0x.0=0, @+ 3@ (13

I1=1 i

where, 6, 1is the average potential, given by:

0, =|0)r (14)

O —y

The prescribed unsteady heat flux can be,

O(t)=A+Br+C1* (15)
or
O(r)=Dx o (16)

As shown by Hsiao and Chung (1983),
using the polynomial flux and applying the
technique in Eq. (13) yields:

2 3
Bt +C3z' ) 17)

6, =F*(Ar+

2 3
49(X,r)=F*(Ar+ Bzz' + ¢z J+

SWOJE(, B 20
s N w0 owou

(18)
iw —| A+ Br—i2 +C 2—2—Z+i4
LN u,
For the exponentials flux,
0, =D*F*T{e%’ —IJ (19)
0, =D*F*t, (e%" —1)
(20)
+m WI(X) ‘D*E (e%r _eﬂgf)
TN e
Tl/
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Equations (10) and (11) represent the
temperature distribution for 7< 7 (7, ,is the initial
melting time of the material), for each adopted heat
flux.

The value of 7, is obtained from solving
the transcendental Eq. (18) or (20), with

6(00,7,,)=1 (21)

Equations (18) and (20) represent the
temperature distribution of the preablation period,
for the considered flux.

Ablation Period

For the ablation period, Eq. (1) is again
used, however, in this period the movement of the
boundary begins, and the domain becomes
S(z)< X <1, and correspondingly 7>z, . The
initial and the boundary conditions are:

6(x,7,)=6,(X). 0<Xx<1 (22)
d0(X, das
6(x,7)=1 and E()X T)—v d(T)= (7).,
! (23)
atX=S(z)
BH(X,T) 3
TX:I =0,7>7, (24)

where 0, (X) is the temperature distribution within

the slab when ablation starts, at z =z, , obtained
by solving Eq. (1), while the parameter v in the
heat balance for the ablating surface, Eq. (25),
where Vv is the inverse of the Stefan number and
S(z ) is the time-dependent position of the inward
moving ablating boundary to be determined from
Eq. (23).

For convenience, the boundary conditions
should be homogenized, for this purpose the
variable transformations were:

0 (X,7)=(X,7)-1 (25)
n=1-X (26)

with,
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m,(7) =1-5(7) (27)

After variable transformations, Eq. (1)
becomes:

96" (n,7) _3°0" (n.7)
ot 0x*

t1>1,, , 0<n<n,()

+20(1)E, (X)),

with initial and boundary conditions
6*(77’Tm):6(77_1’TM )_1 (29)

00 *(n,7) 0
on Y, 1>, (30)

n=0

6*(77’1):0’ TS’Zm s 77=77b(7) (31)

and with the head balance at 77 =17, (z) given by:

dn,,(z'):lae*(ﬂ,f)| _&T) T>T
dT V an ] V b m (32)
and
nh(zm)zl (33)

The following auxiliary problem for the
situation of the ablation period with 7 - dependent
quantities was chosen:

az¢t(’7)
on>

+u @) . 0<n<n,@) (34)

§%QQ =0;¢,ln, (7)l=0 (35)

7=0)
which is readily solved to yield:

A(0)= Qi-1)

2n, (T)

(36)
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¢i(n)= coslu, 2 ), ] (37)

Equation (34) allows the definition of the
following integral transform pair:

Integral Transform:

0, (r J i, 0% (1, 1) (38)

Inversion Formula:

0" (n,.7)= " Ki(n,.7)6: (7) (39)
i=1

where 6; and 6 are the terms that represent,

respectively, the transformed integral and the
inversion formula of the ablation period, with the
symmetric kernel defined as:

y,.1)

k;(.7)= e (40)

and the normalization integral:

N,@)=["w}@)n (41)

Applying the GITT technique, with Eq. (33)

and 7= 7, itis possible to solve the ablation period,
yielding:
dH @ — 2+ (7 )9 (T)+2A (T)G (7)
T J
(42)
" 2i-Dr
—_— . —1 o — =
Gem-=h [(21'—1)2”2 +4}
*/_Lz(zj 16 (2)-(~1Y - Q(T)
[, (r)r
(43)
_dn, (@)
dr

Equations (42) and (43) form a system of
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infinite ordinary differential equations. To solve this
system, it is necessary the substitution of that
infinite system to a finite system of order N. The
number of terms in the series, A, is set according
to the desired accuracy. The truncated system of
ordinary differential from Eqs. (42) and (43) is then:

OO @6 @+3 400 @
(44)
ﬁLz(zj 10 (0)-(-1) -2
e T @
_dn, (@)
dr

Therefore the solution of the system of ordinary
differential equations formed by Egs. (44) and (45),
gives the thickness and the rate of loss of the ablative
material. These values have not yet been calculated up
to this stage of the work. However, it has already been
calculated the temperature distribution from Eq. (32)
in the preablation period, considering the effect of
radiation heat flux on the boundary.

RESULTS AND DISCUSSION

The distribution of temperature in the
preablation period without radiation heat flux is
presented in Fig. 5 and indicates a time of starting
melting of the material of 0.196, according to Diniz et
al. (1993). The distribution of temperature in the
preablation period with radiation heat flux at the
boundary, presented in Fig. 6, shows that the
temperature at the boundary reached the melting point
faster than the case in which radiation is neglected. In
fact, with radiation this time is only 0.0357.

Figure 6 shows both the results without
radiation and with radiation. Noticing the similar
behavior between the temperature field, the effect
of the radiation is clearly visible. So the material
shall be consumed faster in the case of radiation.

In next step of this work the width of the
ablative material and the velocity of the boundary
will be calculated to compare them with results
available in the literature.
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Figure 5. Distribution of temperature in the
preablation period without radiation heat flux
and Q(t) =2
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Figure 6. Comparison between the temperature
field with and without radiation heat flux in the
boundary and Q(t) =2

CONCLUSIONS

The results of interest are the thickness S(#) of
the melted material, the velocity of ablation that can
be calculated by dS(¢)/dt and the temperature field
of the preablation and ablation periods. Here, just the
temperature field of Pre-ablation has been calculated,
to show the influence of radiation.

The thickness and the ablative speed are
represented by the system of ordinary differential
equations, Eqgs. (37) and (38), which can be solved by
numerical techniques in computational codes.

The temperature distribution with the presence
of radiant energy, shown in Fig. 6, shows a fast increase
in temperature with time, in comparison with the work
without radiant energy, from Diniz et al. (1993), as
shown in Fig. 6.

It is also possible to evaluate how shorter is
the time for the radiant heat flux compared with the
case where radiation is neglected, fact imposed for the
high order of the exponent temperature in the analysis
of the heat transfer for radiation. That fact is clearly
observed by the form of the growth of the temperature
distribution shown in Fig. 5. The effect of radiation is
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considered through the last term of the right hand side
of Eq. (1), represented by the E,(X) term. This term is
considered an exponential, because the phenomenon
of the radiation is very fast.

The Generalized Integral Transform Technique
has been applied with success in the present work, for
the solution of the ablation with radiant energy problem
in finite plate geometry. In the sequence of this work,
the other results of interest, namely the depth and the
velocity of ablation, will be calculated.

REFERENCES

Adams, M. C., 1959, Recent Advances in
Ablation, ARS Journal, Avco — Everett Research
Laboratory, Everett, Massachussets, USA.

Cotta, R. M., and Ozisik, M. N., 1987,
Diffusion Problems With General Time—Dependent
Coefficients, Mechanical Sciences RBCM, Vol. 9, No.
4, pp. 2609.

Diniz, A. J., Aparecido, J. B., and Cotta, R.
M., 1993, Heat Conduction With Ablation in a Finite
Slab, Integral Transforms in Computational Heat and
Fluid Flow, Editor Cotta R. M., C. R. C. Press, c. 24,
pp. 131-139 — Florida.

Gomes, F. A. A., Silva, J. B. C., and Diniz, A.
J., 2004, Heat Transfer with Ablation in Cylindrical
Bodies, In: 24th Congress of the International Council
of the Aeronautical Sciences (ICAS), Yokohama, Japan.

Hsiao, J. S., and Chung, B. T. F., 1983, A Heat
Balance Integral Approach for Two-Dimensional Heat
Transfer in Solids With Ablation, AIAA-ASM- 22nd,
Reno, Nevada.

Kurokawa, F. Y., Silva, J. B. C., and Diniz, A.
J., 2003, Analytical/Numerical Hybrid Solution for
One-Dimensional Ablation Problem, in Proceedings
HT-2003-47174, ASME — Summer Heat Transfer
Conference, Las Vegas, Nevada, USA.

Lacaze, H., 1967, La Protection Thermique Par
Ablation, Doc-Air-Espace, No. 105.

Mikhailov, M. D., and Ozisik, M. N., 1984,
Unified Analysis and Solutions of Heat and Mass
Diffusion, John Willey & Sons; New York.

Penner, S. S., and Olfe, D. B., 1968, Radliation
and Reentry, A Volume in the Reentry Physics Series,
Academic Press, New York and London, pp. 415-474.

Sutton, G. W., 1982, The Initial Development
of Ablation Heat Protection, An Historical Perspective,
AIAA — ASM — no. 4038 — Jan. — Fev., Everett,
Massachussets, USA.

Vallerani, E., 1974, Integral Technique
Solutions to a class of sinple Ablation Problems,
Aeritalia Ricerca e Sviluppo Sistemi Spaziali, Settore
Spazio, Torino, Italia.

196 Engenharia Térmica (Thermal Engineering), Vol. 4 - No. 2 - October 2005 - p. 190-196





