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NOMENCLATURE

Fr Froude number

G gravity field, m/s’

1 identity tensor

L length scale, m

p dimensionless pressure

Re Reynolds number

T total tensor

t dimensionless time

U velocity scale, m/s

u,v dimensionless velocity components
X,y dimensionless cartesian coordinates
Greek symbols

ot dimensionless time-step

ox, Oy dimensionless grid spacing

ABSTRACT

The present work is concerned with a numerical method for solving the two-dimensional
time-dependent incompressible Navier-Stokes equations in the primitive variables
formulation. The diffusive terms are treated by Implicit Backward and Crank-Nicolson
methods, and the non-linear convection terms are, explicitly, approximated by the high
order upwind VONOS (Variable-Order Non-Oscillatory Scheme) scheme. The boundary
conditions for the pressure field at the free surface are treated implicitly, and for the velocity
field explicitly. The numerical method is then applied to the simulation of free surface and
confined flows. The numerical results show that the present technique eliminates the
stability restriction in the original explicit method. For low Reynolds number flow
dynamics, the method is robust and produces numerical results that compare very well
with the analytical solutions.

Keywords: Navier-Stokes equations; Finite-Difference method; Semi-Implicit method.

parabolic stability restriction, making the time step
very small for some applications, justifying the
need for methods with better stability properties.

In the present paper, a semi-implicit finite
difference numerical method for solving
incompressible viscous free surface fluid flow
problems is outlined. By using implicit
formulation, this method eliminates the stability
restrictions in the explicit formulation. Therefore,
it is proposed a modification in the GENSMAC
method adding implicit schemes and treating the
boundary conditions for the pressure field at the
free surface implicitly.

As GENSMAC methodology, the produced
time-marching is based on projection methods
(Chorin, 1967; Gresho, 1990). It is a finite
difference technique based on a staggered grid that
solves the full Navier-Stokes equations in primitive

1% fluid kinematic viscosity, m*/s variables. In particular, it solves problems with free
T stress tensor surfaces.

In non-dimensional conservative form, the
INTRODUCTION equations for incompressible viscous Newtonian

flows are

In many fluid flow problems, the viscous

forces are dominant, and several numerical
techniques have been developed for the solution
of'this class of flows. In these fluid flow problems,
the Reynolds number is often much smaller than
1. Due to this fact, numerical techniques that apply
an explicit formulation, as the GENSMAC
(GENeralized Simplified Marker-And-Cell)
method (Tomé and Mckee, 1994), introduce the
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5 (uu)=-Vp Re u

(1a)

V.uZO:

(1b)

where ¢ is time, u=[u(x,y,t),v(x,y,t)] is the

velocity field, p = p(x,y,t) is pressure per unit of
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mass and g = (g .g ) is the gravity field. The non-

. . LU U
Re=—"— Fr=
dimensional parameters Re V and JeL are

the Reynolds and Froude numbers, respectively,
being ; and y the length and the velocity scales,
and v the kinematic viscosity coefficient of the fluid.

NUMERICAL METHOD

The numerical method proposed to solve
Egs. (1a) and (1b) is basically a modification of
the GENSMAC method. Firstly, a provisional
velocity field z is calculated from Eq. (1a), that is,

%JFV(uu)z-vwrivzwf1 2)
ot ' P Re Fr? (

where p is a provisional pressure. Generally, this
provisional velocity field is not a solenoidal field,

so p# p.For t=1,,itis considered that u(x,7,)and

0>

u(x,1,) satisfy the same boundary conditions and

that on the boundary u(x,7,) = a(x,t,). The main

modifications in the GENSMAC method were the
inclusion of the Implicit Formulations (/F) for two
variations in the projection methods.

The first projection method is based on the
solution of the time-discretized Eq. (1a), without a
provisional pressure gradient (referred here as
pressure-free projection method, (Chorin, 1967)
and denoted by P/). Other modification in this
equation is the application of implicit methods for
the viscous terms. The implicit schemes used in
P1 were the Backward Implicit (B/) and Crank-
Nicolson (CN) methods. In order to improve the
temporal accuracy, a 2-step Adams method was
employed. This method uses the CN approximation
for the viscous terms and the explicit Adams-
Bashforth for the non-linear convective terms of
Eq. (2). This method is known as Adams-Bashforth/
Crank-Nicolson (4B/CN). Therefore, applying the
method P/ and using the implicit formulations, Eq.
(2) is rewritten in the following way:

e PJ] — Bl method

- n, 1
u-—eV u=u +5t[ -V.(uu) +Fr2 (3a)
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e PJ]—CN method

~ Ot

- 5p 2 Vii=u +6t[ V.(uu)”+2LR€V2u +—g )(3]3)

e PJ]—-AB/CN method

St
"2Re

12 g"j (o)

+
Fr

20 _é n l n-1 L 240
5=V +6t[ 2V.(uu) +2V.(uu) +2Rev u

Using the theory of the projection methods,
a general velocity field can be decomposed into a
tentative & and the gradient of a potential Vi . In
the PI method, the function v is calculated in the
whole domain. The second projection method used
in this work is based on the method with the
provisional pressure gradient as in Eq. (2), referred
to incremental-pressure projection methods, and
denoted here by P2 (Gresho, 1990). In the same
manner as in the method of P, the viscous terms
were taken implicitly, and Eq. (2) for P2 becomes:

e P2 — Bl method

. 0 -
u- ! (—V.(uu)"-Vp (4a)
e P2_CN method
-0 g +8t(V IRV TR L
u—m -V.(uu)"-Vp >Re u
1 gj (4b)
Fr

e P2_AB/CN method

- ;}; Vii=u +6t(——V (uu)”+—V (uu)"!
1o, 1 (4¢)
—Vp+2R —V-<u +F 58 j

The development of the P2 method using
IF is similar to the P/ method, with the difference
that now 5 = 0 will be calculated. In the GENSMAC
method, the Poisson equation for v is applied for
the whole domain containing fluid, with the
appropriate boundary conditions described in
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(Tomé and McKee, 1994). For the P/ and P2
methods using /F, besides the Poisson equation, a
new equation is imposed on the potential y for the
fluid free surface. This new equation is calculated
from the equation of the pressure in the free surface.
On the free surface, it is necessary to impose
conditions on the velocity and pressure. These
conditions, considering absent surface tension, are
summarized as

(Tm)n=0 and (T.n)m=0, (5)
where n=(n_n)) is the normal vector, external to
the surface, and m = (m,.m,) is the tangent vector
to the free surface. Substituting the total tensor
T =-pI + ¢, where ¢ is the stress tensor and 7 the

identity tensor, in Eq. (5) it may be found
210u o ov o (Ou ov _
_p+R—e[§nx+5ny+[5+ajnxny]—0 (6)

Ou ov Ou  0Ov
Zanxmx +25nymy +[5+5J (nymx +nxmy)= 0 (7)

The equations for v at the free surface are
derived from the equation of the pressure Eq. (6)
with implicit velocity, that is, the boundary
conditions on the free surfaces are also taken
implicitly. The application of P/ and P2 methods
for the implicit formulations in GENSMAC
results in 3 sparse linear systems: 2 due to the
equations that calculate the intermediary velocity
and 1 due to the calculation of the potential .
When the implicit formulations are applied, for
the BI or CN methods, the viscous terms are taken
implicitly, and for that, it is necessary to solve
systems for velocities # and ¥ . The linear systems
resulting from Egs. (3a)-(4c) are sparse, positive
defined and symmetric. Due to those properties,
an efficient method is the Conjugated Gradient
(CG) method. The linear system for y is sparse,
but non-symmetric, and therefore the method used
was the Bi-Conjugated Gradients with
Preconditioning (BCGP). Besides the method
BCGP, there are other alternatives recommended
in the literature for sparse problems such as: the
Generalized Minimum Residual (GMRES) and
Preconditioned Conjugate Gradient Squared
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(PCGS). More details of the numerical methods
using implicit formulations and boundary

conditions at the free surfaces can be found in
Oishi (2004).

STABILITY OF PI AND P2 METHODS

The stability restriction imposed for explicit
treatment of the viscous terms requires that:

By <05 (52) " +(53) | @®)

where §x and Jy are the grid spacing. The
application of Implicit Formulations for the viscous
terms as in Egs. (3a)-(4c), can, in principle, remove
the restriction shown in Eq. (8). Therefore, the
restrictions on §¢ for P/ and P2 using /F are more
relaxed than in the original GENSMAC code.

SOLUTION PROCEDURE

The sequence of steps in the solution
procedure purports updating the discreet variables,
starting from an initial time 7,. The algorithm is
described as follows:

Step 1: For the P/ method, the pressure gradient
Vp is eliminated from the formulation and the
velocity at the free surfaces is calculate from Eq.
(7). For the P2 method, besides the calculation of
the velocity at the free surfaces, the pressure gradient
is conserved, p = p", where p” is the pressure
calculated in the previous time from Eq. (6);

Step 2: Calculate an intermediary velocity field
a(x,t) in 1=t +8¢. When the P/ method is used,
Egs. (3a)-(3¢) can be used. Similarly, when the P2
method is applied, Eqgs. (4a) - (4c) can be used;

Step 3: Solve the Poisson equation for the potential
v in the regions that contain fluid, and at the free
surfaces, calculate y from Eq. (6) with implicit
velocity. Details of the boundary conditions for the
Poisson equation and the equations for y at the
free surfaces can be found in Oishi (2004);

Step 4: Compute the corrected velocity field

un+1 = il— vl//r1+1 ; (9)
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Step 5: Compute the final pressure field. For the
PI method, the pressure is computed from
equation

n+l

=—, 10
5 (10)
and for the P2 method, the equation is
Wn+1
n+l ~
=p+ 11
pr=be (11)

Step 6: Update the marker particles positions. The
last step in the calculation is moving the marker
particles to their new positions. This is performed
by solving

dx dy
—=y and —=v (12)
dt dt

by Euler’s method. The fluid surface is defined
by a list containing these particles and the
visualization of this boundary is obtained by
connecting them by straight lines.

DISCRETIZATION

Equations (1a) and (1b) are approximated
in a staggered mesh. In this mesh, the pressure
is stored at cell centers and the components of
the velocity « and v are stored in the middle of
the lateral faces. As in Tomé and McKee (1994),
the diffusion terms and the pressure gradient in
Egs. (3a)-(4c) are approximated by central
differences, whereas the time derivatives are
approximated by forward differences (Euler
explicit). The convective terms are discretized
by the VONOS scheme (see Ferreira et al., 2002),
which is a bounded upwind technique. For
solving the conservation equations, the
FREEFLOW2D (see Castelo et al., 2000)
simulation environment is used.

This systems is composed of three module:
a modeling module (modeler) a simulation
module (simulator, which implements the full
Navier-Stokes equations and mass conservation
equation) and the visualization module
(visualizator).
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NUMERICAL RESULTS

In this section, numerical results using the
implicit formulations are presented. The main aim
in the comparison is assessing the efficiency of P/
and P2 methods using BI, CN and AB/CN
formulations, in relation to the explicit method for
problems with Re < 1. The results are encouraging,
in terms of accuracy and efficiency. The following
test cases are considered.

Hagen-Poiseuille Flow

The validation of the numerical results
using P/ and P2 methods with /F" was performed
on the flow of a fluid between two parallel plates.
In this test case, comparisons between the
numerical solutions and the analytical solution are
feasible (see Batchelor, 1970). In this simulation,
two parallel plates separated by a distance L =1 m
are considered, forming a channel, that is initially
empty and through which the fluid is injected in
its entrance region with parabolic velocity profile.
The PI and P2 methods using /F were applied
using three meshes, defined respectively as coarse
(M1, where 6x=65y=0.1); middle (M2, where
6x=0y=005), and fine (M3, where
dx =0y =0.025) meshes. In order to show the
convergence of the methods presented in this work
the relative error, in the /, norm, between the
numerical solutions and the analytic was calculated.
These results are presented in Tab. 1.

It can be observed from Tab. 1 that the
numerical results are similar to the analytic
solution, that is, the numerical values obtained
by the P/ and P2 methods, on the three meshes,
are in good agreement with the analytic solution.
For creep flow problems, the /F was more stable
than the original explicit method. Table 2 shows
the &t allowed by implicit and explicit
formulations. The methods that use the
formulation B/ admitted values of & larger than
the other formulations. When Re decreases, the
restriction on the time step for the explicit method
(Eq. 8) was overcome by the P/ and P2 methods.
From Tab. 2, it can be seen that the methods using
the formulation B/ demanded a §¢ about 500 to
500,000 times larger than the explicit method,
when Re decreases, whereas the formulations CN
and AB/CN presented &¢ about 20 times larger,
regardless of the Re.
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Table 1. Results of Hagen-Poiseuille flow for
Re = 0.1 in the meshes M1, M2 and M3
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Table 2. Limited of stability for §; in Hagen-
Poiseuille flow over the mesh M2, with different

Re values

Method St M1
Explicit 1.0x10” 2.5x10” Method | Re=10" | Re= 102 | Re— 10° | Re— 10"
PI-BI 1.25x10° 7.1x10” Explicit | 2.5<10° | 2.5%10° | 2.5x107 | 2.5x10"
PI-CN 2.0x10” 5.6x10™ P1-BI 125x107 | 1.25%102 | 1.25x107 | 1.25%107
PI1-AB/CN 2.0x10” 1.6x10" PI-CN 50%107 | 5.0x10° | 5.0x10° | 5.0x107
P2-BI 1.0x107 2.5%10° PI-AB/CN | 5.0x10% | 5.0x10° | 5.0x10° | 5.0x107
P2-CN 2.0x107 2.5%10° P2-BI 1.25x107 | 1.25x107 | 1.25x107% | 1.25x10
P2-AB/CN 2.0x107 2.5x107 P2-CN 5.0<10% | 5.0x10° | 5.0x10° | 5.0x107
Method St M2 P2-AB/CN | 5.0x107 | 5.0x10° | 5.0x10° | 5.0x10”
Explicit 2.5%x107 1.8x10° i i
PI-BI 2.5%10" 3.7x107
PI-CN 5.0x10™ 4.5%10°
P1-AB/CN 5.0x10™ 2.5%x10°
P2-BI 1.25x10~ 1.8x10°
P2-CN 5.0x10™ 1.8x10°
P2-AB/CN 5.0x10™ 1.8x10°
Method ot M3
Explicit 6.25x10° 1.3x107 Figure 1. Numerical simulation of container
PI-BI 6.25x10° 3.2x10° filling, with e =0.1 and simulation time 7 = 5.6,
PI-CN 1.25x10™ 3.2x10° for the P2 hod usine the CN f lati
PIAB/CN L 25x10° 2 1x10° or the method using the ormulation
P2-BI 6.25x107 1.2x107
P2-CN 5.0x10™ 1.1x107 Table 3. Results for simulation of container filling.
P2-AB/CN 5.0x10™ 1L.1x10” Input data employed: £ =0.05m, U =1.0m/s, and

Simulation of Container Filling

In this test case, the filling of a container
with a Newtonian fluid with Re = 0.1 is considered.
In this simulation a comparison of CPU time was
made using the P/ and P2 methods with /F, and
the explicit method. For these models, a mesh
dx =05y =0.0005 was used for all methods. The
gravitational field acts on the flow and the final
time of the simulations was # = 700. An illustration
is presented in Fig. 1 where the behavior of the
flow can be observed.

The results obtained by the P/ method,
using the BI, CN and AB/CN formulations and
those by P2 method using the B/ and AB/CN
formulations were very similar to those of the
P2 method using the CN formulation. In Fig. 1
one of the results is presented. A comparison
between the methods that use the implicit and
explicit formulations, regarding the value of
ot allowed for each method, the number of
iterations and the CPU time for the time 7=5.6,
can be seen in Tab. 3. Again, the implicit
formulations overcame the restriction of stability
of the original explicit method. These methods
used less iterations to obtain the solution at the
time ¢ = 5.6.

1=5.6

Number of CPU time-
Method 8t iteration minutes:seconds
Explicit 5.0x107 559998 430:59
PI-BI 3.0x107 11200 41:52
PI-CN 1.0x10° 28000 99:16
PI1-AB/CN 1.0x107 28000 106 : 18
P2-BI 6.0x107 8960 21:41
P2-CN 1.0x10° 28000 92:51
P2-AB/CN 1.0x107° 28000 96 : 25

Comparison with Experimental Results

Finally, in this test case, qualitative
comparisons between numerical results with the
experiments described by (Tomé et al., 1999) are
carried out. For this model, a mesh of
dx =Jy =0.0005 was used for all methods, with the
gravitational field acting on the flow and a final
time of 7= 100. Figure 2 presents the comparison
between the numerical solution and an
experimental configuration. In this figure, the
numerical method used was the P2 method with
the BI formulation. The other methods that use the
implicit formulations are not displayed because
they showed similar results to the P2 method using
the formulation BI. The results obtained with the
explicit method (Tomé et al., 1999) were very close
to those of the implicit formulations. However, the
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time-step of the explicit method became very small
due to the parabolic stability restriction (Eq. 8).
The implicit formulations, as previously presented,
allowed larger values for s, overcoming the
restriction of the original explicit method.

Therefore, the main difference between this
work and that of Tomé et al. (1999) was the
significant CPU cost saving. This fact is very
important in engineering applications.

Figure 2. Experimental solution (left) and
numerical (right) solution by using P2 method with
the BI formulation. a) 1 =35, b) r=155, ¢) t =65 and

d) = 85. The fluid used in this simulation was the
glucose syrup solution (see Tomé et al., 1999)
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CONCLUSIONS

The main purpose of this work is the design
and analysis of implicit numerical schemes, which
can be used in conjunction with the GENSMAC
method, for the simulation of transient viscous
incompressible Newtonian flows with free surface.

A modification was made to the implicit
treatment of boundary conditions for pressure at
the free surface. The implicit formulations
presented satisfactory results for unsteady free
surface flows. The validation showed the
comparison between the analytic solution and the
numerical solution of the P/ and P2 methods using
IF. The numerical results show the capacity of these
semi-implicit methods of simulating fluid flow with
free surface. However, the CN and AB/CN
formulations introduced numerical oscillations, and
as a consequence, the allowed value of §; was more
restrict than that of the B/ formulation. More details
about the numerical oscillations of the method CN
can be found in Hirsch (1989) and Turek (1996).

Although the CN and AB/CN formulations
have allowed a time step larger than that of the
original explicit method, the B/ formulation proved
to be stable allowing very large values of §¢. Care
is recommended in choosing the time step so that
numerical accuracy is not affected. In all the
simulations, the implicit formulations overcame the
value of the time step of the explicit method and,
in some cases, the §¢ was approximately 500000
times larger than the one of the explicit method.

The P/ and P2 methods using the implicit
formulations presented similar errors to those of
the explicit method with a much smaller number
of iterations. The processing time demanded by the
implicit formulations was significantly shorter than
that of the explicit formulation. Therefore, the P/
and P2 methods using the implicit formulations
showed to be capable of solving viscous problems
with free surfaces.
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