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ABSTRACT 

 

Over the last two decades, a comprehensive mathematical model and its corresponding 

computational program, aimed to simulate steady-state operations of bubbling 

fluidized bed equipments, has been continuously improved and tested. Despite its 

success, the simulator has employed a simple approach for radiative heat transfers. In 

cases of high temperatures, thermal radiation becomes an important energy transfer 

mode and the original model could lead to deviations above acceptable levels. The 

purpose of the present work was to improve the model for thermal radiation heat 

transfer between all solid particles in the bed section by applying a two-flux method to 

a non-homogeneous polydispersed particulate media in radiative equilibrium. Gases in 

the emulsion and in the bubbles were assumed transparent to thermal radiation. This 

first part of the paper presents and discusses the basic structure of the former 

mathematical model and of the new one. 

 

 

INTRODUCTION 

 

Fluidized bed equipments are employed in many 

industrial processes such as combustion and gasification. 

Among their advantages over more conventional 

technologies, one can mention bed temperature control and 

uniformity, low pollutant emission rates, high turndown 

ratios and relatively high heat-transfer coefficients between 

bed material and immersed tubes. 

Since experimentation is more expensive than 

computation, modeling and simulation of fluidized-bed 

equipment play a major role in design and optimization. 

Moreover, numerical procedures may be the only 

permissible way to explore limiting situations due to safety 

concerns. Hence, a comprehensive mathematical model 

and computer program should cover important aspects of 

the process in order to be able to predict parameters that 

describe the operation of the equipment. 

Over the last 20 years, a comprehensive 

simulation program for bubbling fluidized bed equipments 

has been improved and tested against experimental data 

(de Souza-Santos, 1987). At its present stage, the 

mathematical model includes up to 100-coupled 

differential equations for mass and energy balances. A 

large number of those were incorporated in later versions 

of the program (de Souza Santos, 1989, 1992, 1993, 1994, 

1995, 1996, 1997, 1998 and 1999), which evidences the 

dynamic feature of the simulation program, namely its 

ability to be extended and updated with newly published 

information. 

In systems where high temperature levels are 

achieved, such as in boilers and gasifiers, thermal radiation 

is an important heat transfer mode. Despite its success, the 

present version of the simulator has employed a simple 

approach for it. Therefore, further improvements are 

possible. This work intends to accomplish that, mainly for 

the treatment of radiative heat transfers between solid 

particles in the bed section. 

In order to preserve the basic structure of the 

original mathematical model and simulation program, a 

two-flux approach was applied to a non-homogeneous 

polydispersed particulate media in radiative equilibrium. 

The choice of such method comes also from the fact that 

thermal radiation in participating media is governed by an 

integro-differential equation. The addition of such 

equations in the model would bring great difficulties for 

the mathematical solutions of differential systems of 

equations. The flux models use approximations for the 

directional dependence of radiation intensity, therefore 

allowing integro-differential equations to be replaced by a 

set of differential ones. 

 

BASIC DESCRIPTION OF THE 

CURRENT MATHEMATICAL MODEL 

 

The simulator considers steady-state operations of 

bubbling fluidized bed equipments. Another major 

assumptions are (de Souza-Santos, 1987, 1989): 

• Axial plug-flow regimes for ascending gas in bubbles 

and gas percolating the particles in the emulsion. 

Hence, all physical quantities and operational 

parameters for gas phases are function of the bed 

height z alone.  

• Bubbles are free of particles. Therefore, the emulsion 

contains all particles plus the percolating gas. 

• Solid particles move randomly in the bed. 

Figure 1 shows a schematic representation of typical 

fluidized bed equipment simulated. 

 

Engenharia Térmica, nº 3, 2003 p. 64-70



65

CYCLONE

discharged

     solids

recycled

solids

Z = 0

Z =Z
D

Z=Z
F

solids

(various)

gas and/or

steam

PLENUM

D
D

INSULATION

DISTRIBUTOR

SURFACE

DISTRIBUTOR

INSULATION

ORIFICES

exit stream

(gas + particles)

FREEBOARD

D
F

BED

tube

bank

tube

bank

Z =Z
TUDT

Z =Z
TUDB

 

Figure 1. Schematic representation of a typical fluidized 

bed equipment simulated 

 

In general, carbonaceous solids are continuously 

fed into the bed. Other species present in the emulsion 

phase are interstitial gas, inert material and limestone. The 

bubble phase is free of solid particles and the clouds are 

incorporated in the emulsion phase. Plug-flow regimes are 

assumed for the gas in the bubble and for the interstitial 

gas in the emulsion. This kind of flow is also assumed for 

the gas flow in the freeboard. 

At the bed base (z = 0), the only set of boundary 

conditions completely known refers to the gas stream 

injected through the distributor. Boundary conditions for 

the lowest part of the freeboard correspond to the exiting 

conditions at the bed top. However, boundary conditions 

for the temperature of each individual solid species at the 

bed base are given by a convergence routine based on the 

heat fluxes transferred by convection and by conduction at  

z = 0 . 

The basic system of differential equations 

resulting from the mass and energy balances throughout 

the bed and freeboard sections as well as the simulation 

strategy can be found in the forerunner work (de Souza-

Santos, 1987) and in later versions (de Souza Santos, 1989, 

1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999). 

 

Energy balances and heat transfers in the 

bed section: original model 

 

The comprehensive simulation model takes into 

account many heat transfer modes occurring inside the 

equipment, involving different phases, namely between: 

• Gas in the bubbles and in the emulsion; 

• Solids and gas in the emulsion and in the freeboard; 

• Solids in the emulsion and in the freeboard; 

• Tube banks and gas in the bubbles and/or in the 

emulsion in the bed section; 

• Tube banks and gas in the freeboard section; 

• Tube banks and solids in the bed and in the freeboard 

section; 

• Distributor plate and the bed; 

• Inner reactor walls and the bed; 

• Inner reactor walls and gas in the freeboard; 

• Outer reactor walls and the environment; 

• Inner tube walls in the bed or in the freeboard section 

and water (liquid or vapor) inside. 

The energy balance for a m-type solid (m = 1  for 

carbonaceous,  m = 2  for limestone and  m = 3  for inert) 

in the emulsion (bed section) is expressed by: 
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where  F
SE,m

  is the solid mass flow (kg.s
−1

),  c
S,m

  its 

specific heat (J.kg
−1

.K
−1

) and  T
SE,m

  its temperature (K). 

The meaning of each energy source or sink term (W.m
−1

) 

on the right hand side of the Eq. (1) is 

• E
Q,SE,m

 = energy released from solid surface chemical 

reactions; 

• E
M,SEGE,m

 = energy transferred between solids and gas 

due to mass transfer; 

• E
C,SEGE,m

 = energy transferred through convection 

between solids and gas; 

• E
C,SESE,m,n

 = energy transferred through convection 

between solids  m  and solids  n ; 

• E
R,SETD,m

 = energy transferred through thermal 

radiation between solids and tubes in the bed section; 

• E
R,SEWD,m

 = energy transferred through thermal 

radiation between solids and reactor walls in the bed 

section; 

• E
R,SESE,m,n

 = energy transferred through thermal 

radiation between solids m and solids n . 

A similar equation holds for solids in the freeboard. As a 

model simplification, gas phases in the emulsion and in the 

bubbles are assumed transparent to thermal radiation. 

Hence, there is no radiative heat transfer term such as  

E
R,SEGE,m

 . 

 

Radiative heat transfer between solids: 

original model 

 

Radiative heat exchange between the various 

solids in the emulsion is calculated as 

 ( )
z
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fTTE
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mSE,SEnm,SESE,R,
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where  σ  is the Stefan-Boltzmann constant and  dA
SE,m

  is 

the total particle surface area in a differential bed section 

of length  dz . The “average” emissivity  
SE
ε   is defined in 

terms of the area fraction  f″  and emissivity  ε
S
  of the 

corresponding solid species, according to 
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The model assumes that the m-type particles are 

surrounded by particles of all types and therefore they 

“see” n-type particles through an area fraction  f
n
″ . In 

analogy, for the “reverse” radiative heat transfer it is 

possible to write. 
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In order to establish a relationship between Eqs. 

(2) and (4), the definitions for  (dA
SE,m

/dz) ,  (dA
SE,n

/dz) ,  

f
m

″  and  f
n
″  should be evoked. In original model, the first 

two quantities are given by 
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whereas 
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where  S
E
  is the emulsion cross sectional area and  υ

E
  the 

emulsion void fraction. For the m-type particles in the 

emulsion,  A
SE,m

  and  V
SE,m

  are their total surface area and 

total occupied volume respectively whereas  f
m

′  and  f
m

′″  

are their number and volume fractions in this order. In the 

model, these fractions are calculated as 
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Here,  ρ
S,m

  is m-type solid density and  f
m

  is its 

corresponding mass fraction, obtained from the mass 

fraction referred to the particle size distribution (de Souza-

Santos, 1987). 

After some algebraic manipulations, it is possible 

to demonstrate that 
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This equation is much like a “law of reciprocity for view 

factors”, commonly encountered in radiative heat transfer 

problems (Brewster, 1992 and Modest, 1993). An 

important mathematical consequence of inserting the 

above relation back into Eq. (2) and comparing the 

resulting equation to Eq. (4) is that 

E
R,SESE,m,n

 = −E
R,SESE,n,m

  ⇔  E
R,SESE,m,n

 + E
R,SESE,n,m

 = 0 (9) 

The total radiative heat transfer  E
R,SESE,m

  

concerning the m-type particles is the sum 

 ∑

=

=

3

1n

nm,SESE,R,mSESE,R,
EE  (10) 

Because of Eq. (10), at any bed position  z  the sum of all 

radiative heat transfer terms  E
R,SESE,m

  equals zero, i.e., 

 0

3
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3
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3
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== ∑∑∑

= ==
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since the 9 terms taking part in the above double 

summation, either cancels each other or are identically null 

(which is the case of the 3 terms  E
R,SESE,m,m

 ). 

The condition stated by Eq. (11) establishes a 

“conservation” of the thermal radiation exchanged among 

the solids. In other words, at a given position  z  in the bed, 

the local physical conditions (particle temperature, number 

fraction, area fraction, volume fraction) determine the 

amount of thermal radiation to be exchanged between 

particles. 

 

RADIATIVE HEAT TRANSFER IN 

PARTICIPATING MEDIA 

 

As far as the computational program is concerned, 

it is assumed that Eq. (11) is a condition to be imposed by 

convergence. Such condition would also be applied in the 

improvements of the simulation regarding radiative heat 

transfer between solids. The new approach follows a two-

flux model, which is incorporated to the simulation model. 

Therefore, the thermal radiation terms  E
R,SESE,m

  are 

conveniently redefined as to preserve Eq. (11). 

 

Thermal radiation within monodispersed 

participating media 

 

Radiative heat transfer with participating media is 

governed by an integro-differential equation known as the 

transfer equation. It represents the radiative energy balance 

on a differential volume element along a given line of 

sight. As sketched in Fig. 2, it provides a balance for the 

radiation intensity  I  (W.m
−2

.sr
−1

) as it travels through a 

distance  dl  in participating media. Three processes 

influence this balance: absorption, emission and scattering. 

 

 

Figure 2. Radiative intensity variation across a plane-

parallel particulate system. 

 

In order to preserve the basic structure of the 

original mathematical model and simulation program, axial 

symmetry was evoked. Therefore, the intensity  I  at any 

point becomes independent of the azimuth angle  ψ . 

However, it may still depend on the polar angle  θ  

measured from the  z-axis. Following other investigators 

(Modest, 1993), isotropic scattering was assumed as well. 

Under all these assumptions and introducing  µ = cosθ  and  

dz = dl cosθ , the transfer equation for a plane-parallel 

media (composed by a single solid type) is expressed as 

 )(
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where  K
a
  and  K

s
  (m

−1

) are respectively the absorption and scattering 

coefficients and  T = T(z)  is the local particle temperature. The quantity

 ∫∫
−π

µµπ=Ω==

1

14

d ),(2d )( zIIzGG  (13) 

is referred to as the incident radiation function and 

corresponds to the total intensity impinging on a point 

from all incoming directions, i.e., over the entire solid 

angle  Ω = 4π sr . Note that  I = I(z,θ)  and also that  dΩ = 
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2π senθ dθ , in accordance to the axial symmetry 

assumption. 

Consider a surface element whose outward normal 

is n̂ , as sketched in Fig. 3. 

 

 

Figure 3. Radiative heat flux into and out of a surface. 

 

The radiative flux onto an orthogonal surface 

projection  dA
⊥
 = dA cosθ  is negative, whereas the 

radiative flux out of this surface element is positive. The 

net flux  q

r

  can be expressed in terms of incident and 

outgoing intensity as 

 ∫∫
−π

µµµπ=Ω⋅=⋅

1

14

d  ),(2d ˆˆ ˆ zIsnInq

r

 (14) 

If energy balances are to be considered for the 

particulate media, attention should be assigned to the net 

radiative energy per unit volume and per unit time leaving 

a differential volume element in the bed. This quantity is 

represented by the divergence of the radiative flux vector, 

Eq. (14), and may be obtained by integrating Eq. (12) over 

the full  4π sr  solid angle range. The result, demonstrated 

elsewhere (Brewster, 1992; Modest, 1993), is 
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Independent absorption and scattering were also 

assumed. Thus, particles interact with incident radiation 

without being influenced by the surrounding ones. 

According to regime maps presented by Brewster and Tien 

(1982), Tien (1988), Brewster (1992) and Modest (1993), 

that is a very good approximation when applied to typical 

operations of fluidized bed equipments. Those maps are 

based on particle diameter, particle center-to-center 

distance and incident wavelength. As a result, absorption 

and scattering coefficients  K
a
  and  K

s
  are obtained by 

adding single-particle properties. As pointed by Shafey et 

al. (1993), considering usual thermal radiation wavelengths 

and particle sizes found in fluidized beds, geometric optics 

results can be employed. 

For a monodispersed fluidized bed of spherical 

opaque solids in the large particle limit, the expressions for 

absorption and scattering coefficients for a given solid 

species  m  are respectively (Brewster, 1992) 
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where  f
V,SE,m

  is the fraction of emulsion volume occupied 

by the m-type solids, whose diameter  d
S,m

  is supposed to 

be constant. It should be mentioned that this fraction do not 

correspond to the volume fraction 
m

f ′′′  previously 

introduced. 

 

Thermal radiation within polydispersed 

heterogeneous participating media 

 

When the bed is composed by particles of 

different sizes, polydispersion effects take place. For a m-

type solid, the supposed constant particle diameter  d
S,m

  in 

Eqs. (16) must be replaced by a mean diameter  d
32,m

 , 

defined in terms of its corresponding radius  r
32,m

 = d
32,m

 / 2 

, as suggested by Brewster (1992), 
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where   n
m

(r) = N
m

(r) / V
E
   is the number of m-type 

particles per unit of emulsion volume, whose radius lies 

between  r  and  r + dr . 

In the simulation program, the above integrals are 

numerically evaluated. At a given bed height  z , the total 

particle mass  M
m

  obeys the following relations: 
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where  x
m,i

 = N
m,i

 M
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 / M
m

  is the mass fraction of the  N
m,i

  

particles belonging to the i-th Tyler mesh opening. 

Assuming constant particle density  ρ
S,m

 , it follows that 
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Here, 
i

~

r  is the average radius of the i-th size interval. 

Then, a discrete evaluation of  r
32,m

  is 
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This result shows that the average diameter  d
32,m

  

necessary for the calculation of absorption and scattering 

coefficients, corresponds to the very same average 

diameter  
mS,

d , as defined in most texts on fluidization 

theory (Kunii and Levenspiel, 1969; Geldart, 1986), or 
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Moreover, for each solid species  m, it is possible 

to relate the distinct volume fractions  f
V,SE,m

  (needed for 

the evaluation of optical coefficients) and  f
m
′″. If  V

GE
  and  

V
SE

  are, respectively, the volume occupied by the gas 

phase and the solids in the emulsion, the total volume of 

emulsion is simply  V
E
 = V

GE
 + V

SE
  , and 
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where  f
V,SE

  is the fraction of the emulsion volume 

occupied by all particles. On the other hand, 
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and the desired relation is then obtained as 
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The absorption and scattering coefficients for a 

given solid type  m  in a monodispersed particulate media, 

Eqs. (16), may now be replaced by their polydispersion 

counterparts, or 
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Since volumetric fractions are independent and additive, 

emulsion bulk absorption and scattering coefficients are 

simply given by 

 ∑=
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m
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KK  (26) 

However, the same rationale should be carefully 

applied to the emission term in the transfer equation. A 

non-linearity arises because distinct solid species may be at 

different temperatures and the emission depends on the 

fourth power of those temperatures. Having this in mind, 

Eq. (12) for a plane-parallel heterogeneous polydispersed 

emulsion becomes 
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where  K
a
  and  K

s
  are given by Eqs. (25) and (26). 

 

Radiative heat transfer between solids in 

the emulsion: two-flux model 

 

The directional dependence of the radiation 

intensity remains to be solved and flux models may be 

employed in order to simplify the problem. The two-flux 

model relies on a semi-isotropic distribution of the 

radiation intensity, namely 
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Integration of Eq. (27) over each range of  µ  results in the 

following differential equations: 
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Another consequence is that the incident radiation function  

G  may now be evaluated as 

 )(2
−+

+π= IIG  (31) 

As an initial approach, the two-flux method was 

applied in the bed section in order to obtain an alternative 

of Eq. (10) for the radiative heat transfer rate  E
R,SESE,m

. 

Since  q

r

⋅∇   represents the thermal radiation balance 

within an emulsion volume element, the idea was to 

employ that term written for each solid species  m. It is 

then assumed that 

 ( )GTKSqSE −σ=⋅∇=

4

mSE,ma,EmEmSESE,R,
4
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where  S
E
  is the emulsion sectional area (including 

interstitial gas) at bed height  z . This equation represents a 

balance between emitted (
4

m
4 Tσ ) and incident (G) 

radiation for the m-type particles in an emulsion volume 

element of height equals to  dz . A schematic balance for a 

single particle is shown in Fig. 4. 

 

Figure 4. Thermal radiation absorption by and emission 

from a m-type single particle. 

 

Equations (31) and (32) show how solutions  I
+

(z) 

and I
−

(z) are used to compute E
R,SESE,m

. Furthermore and as 

shown in Fig. 4, the thermal radiation balance is 

accomplished after integrating all involved intensities over 

a full  4π sr  solid angle. For that, the assumption  ε
S,m

 = 

α
S,m

  is applied. 

 

Adaptation to the former simulation 

model: radiative equilibrium 

 

Applying the physical-mathematical condition 

stated by Eq. (11) to Eq. (32), the following result arises: 
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In the literature (Brewster, 1992; Modest, 1993), this 

condition is referred to as radiative equilibrium and it is 

useful when thermal radiation is the dominant mode of 

heat transfer. Nevertheless, conduction and convection are 

incorporated as well into the heat source (or sink) term. As 

commented by Modest (1993), “the inclusion of a 

volumetric heat source allows the treatment of conduction 

and convection ‘through the back door’ ”. Therefore, the 

solution becomes an iterative process due to the mutual 

dependence among the temperature profiles and the heat 

source (sink) terms. 

If Eq. (33) is valid for all bed positions, it can be 

shown with the help of Eqs. (31) and (32), that  I
 +

(z)  and  

I

 −

(z)  are no longer independent, but related to each other 

according to 

 ∑
π

σ

=+

−+

m

4

mSE,ma,

a

12

)()( TK

K

zIzI  (34) 

It should be mentioned that the above condition holds for 

the two-flux approximation. Therefore, only Eq. (29) should 

be included in the computational procedure. Temperature 

profiles of each solid species are found by solving Eq. (1). 

There, the summation  ∑ E
R,SESE,m,n

 [Eq. (10)] should be 

replaced by  E
R,SESE,m

, as given by Eq. (32), or 

Engenharia Térmica, nº 3, 2003 p. 64-70

J. A. Rabi et al. Incorporation of a Two-Flux...



69

mSEWD,R,mSETD,R,

mSESE,R,

3

1n

nm,SESE,C,

mSEGE,C,mSEGE,M,mSE,Q,

mSE,

mS,mSE,

                                 

                                 

d

d

EE

EE

EEE

z

T

cF

−−

−−

−−−=

∑
=

(35) 

Equations (29), (31), (32), (34) and (35) demonstrate the 

coupling suggested by Modest (1993). 

 

Boundary condition for the forward 

radiation intensity transfer equation 

 

Since all inlet particle temperatures  T
SE,m

(0)  are 

known, Eq. (34) applied at z = 0 provides a condition for 

the sum  I
 +

(0) + I
 −

(0) , namely 

 ∑
π

σ

=+

−+

m

4

mSE,ma,

a

)0(

12

)0()0( TK

K

II  (36) 

A further relation between these two quantities 

can be obtained with the help of an imaginary radiating 

gray surface at temperature  T
im

 , with emissivity  ε
im

  and 

reflectivity  ρ
im

 . Such a surface lies just above the 

distributor plate, whose corresponding properties  T
d
 ,  ε

d
  

and  ρ
d
  are known. This upper surface may correspond to 

a first layer of the emulsion, as sketched in Fig. 5. 

 

 

Figure 5. Radiative heat transfer between two plane-

parallel, gray and isothermal surfaces. 

 

Both surfaces are assumed to be diffusely emitting 

and reflecting opaque. This is a typical thermal radiation 

exchange problem between two infinite parallel flat 

surfaces facing each other. Writing the radiosities  J
d
  and  

J
im

  for each surface and identifying the intensity  I
+

(0)  to 

the irradiation  H
im

 , and the intensity  I

−

(0)  to the 

irradiation  H
d
  (which is reasonable, since the separation 

distance is very small), the following relations should hold 

(Goldstein Jr., 1988): 

 

)]1)(1(1[

)1(

)0(

imd

4

imimd

4

dd

ε−ε−−π

σεε−+σε

=

+

TT

I  (37) 

 

)]1)(1(1[

)1(

)0(

imd

4

ddim

4

imim

ε−ε−−π

σεε−+σε

=

−

TT

I  (38) 

Values for  ε
im

  and  T
im

  should be such that, after 

their substitution into the above equations along the 

corresponding distributor parameters, the intensities  I
+

(0)  

and  I

−

(0)  do satisfy Eq. (36). Nevertheless, their 

definitions are unnecessary because few algebraic 

manipulations involving the above relations and Eq. (36) 

lead to the following boundary condition: 

 

















ε−

ε

+

ε−

ε−

π

σ

= ∑
+

d

4

dd

m

4

mSE,ma,

ad

d

2

 

)0(

1

2

)1(2

)0(

T

TK

K

I (39) 

which is independent of  T
im

  and  ε
im

 . 

The distributor temperature  T
d
  is calculated by 

an iterative process, which has been used since the early 

versions of the program (de Souza-Santos, 1987). The 

procedure is based upon an empirical correlation 

developed by Zhang and Ouyang (1984). 

 

CONCLUDING REMARKS 

 

As shown, the mathematical model for the 

radiative heat transfer between all solid species in the bed 

section of a fluidized bed has been reformulated. For this 

region, a new first-order ordinary differential equation was 

incorporated to the simulator. That equation governs the 

variation of the forward radiation intensity. Its solution 

allows the computation of thermal radiation exchange rates 

between particles in the emulsion. The associated 

boundary condition and auxiliary expressions were also 

implemented in the computational program. Numerical 

results are presented and assessed in next part of the paper. 
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