AVALIAÇÃO DE MÉTODOS FÍSICOS DE SUSPENSIBILIDADE PARA FORMULAÇÕES DE DEFENSIVOS AGRÍCOLAS*

RITA DE CÁSSIA FRISCO DE OLIVEIRA NEVES**
CLÁUDIA CONTI MEDUGNO***
MARINA LESSA DE CASTRO***

A suspensibilidade é um dos testes físicos exigidos no certificado da SDSV para registro de defensivos agrícolas, pela Portaria 6, de 08. 02.85, para formulações do tipo pó molhável, suspensões concentradas, e granulados dispersíveis em água. As organizações internacionais (e.g. CIPAC) recomendam que, para formulações fungicidas, a suspensibilidade do princípio ativo seja de 60% e, para as outras classes de defensivos, 50%. A exigência de que a suspensibilidade seja uma medida da porcentagem do princípio ativo em suspensão, implica na inclusão de sua dosagem no fracionamento decantado. No entanto, tal como executado hoje no país, o método ABNT-NBR 8511 elimina a dosagem do ativo, e determina apenas a porcentagem de sólidos insolúveis em suspensão. O objetivo deste trabalho é obter resultados que possam validar o método ABNT 8511. Foram selecionadas nove amostras de arquivado de retenção do CATI, e a suspensibilidade foi medida pelos métodos CIPAC e NBR 8511. Os resultados indicam que o teste ABNT representa simplificação útil e econômica para fins de fiscalização de defensivos agrícolas.

*Trabalho apresentado no I Seminário Brasileiro de Agrotoxicos. Curitiba, 27 a 29 de novembro de 1990.
**CATI - COORDENADORIA DE ASSISTÊNCIA TÉCNICA INTEGRAL.
***CNPDA/EMBRAPA.

Para que possam ser convenientemente utilizados, os agrotóxicos devem ser formulados, isto é, devem ser misturados a inertes e aditivos que garantam ao produto bom desempenho. A forma final do agrotóxico representa um compromisso entre as propriedades físicas e químicas do ingrediente ativo, eficiência agronômica da formulação e fatores econômicos ligados à sua produção e comercialização (4).

Qualidades gerais de uma formulação incluem diluição satisfatória em água com ampla faixa de dureza, composição e temperatura, frequentemente em mistura com outros pesticidas. A composição diluída deve se manter em suspensão por período de horas ou dias, em uma variedade de pulverizadores que podem ou não ser agitados. O fator diluição, está na faixa de 1:5 a 1:1000, e muitas vezes a formulação deve cobrir esses extremos.

O pó molhável é composto pelo princípio ativo, surfactantes, inertes, e possíveis aditivos, como os agentes de adesão, que conferem as características de deposição em folhas. A qualidade de uma formulação pó molhável é julgada pela rapidez da molhabilidade quando misturada em água, e pela estabilidade da suspensão formada quando a formulação é diluída nas condições de aplicação no campo (3). Qualquer suspensão é termodinamicamente instável devido à elevada área superficial criada em sua preparação. O sistema tende a reduzir a alta energia livre superficial através de processos de separação de fase.

Os sistemas surfactantes usados em pó molháveis consistem em mistura de um agente dispersante e um agente molhante, a quantidade de cada componente variando de 1 a 10% do peso total da formulação. A seleção do par compatível é um processo empírico, sendo geralmente necessário grande número de tentativas. Os surfactantes da classe dispersante são adicionados aos pó molháveis para promover a formação de flocos reversíveis. São geralmente substâncias aniónicas, como sais de ácido lignosulfônico e poli(enol)poli(oxetanos) acetalizados. A molhabilidade de um pó é o tempo requerido para remover da superfície das partículas, deve ser barreira que impeça o contato entre elas, e não deve ser removida durante as colisões (1). A molhabilidade de um pó é o tempo requerido para que a parte da formulação se desencher completamente submergindo a superfície da água. Quanto menor for o período de tempo (em segundos) requerido para o desencherimento, melhor é a molhabilidade da formulação. A velocidade da molhabilidade pode ser aumentada pela escolha apropriada dos agentes molhantes, que reduzem a tensão interfacial entre as partículas e a água. A seleção do molhante é governada por sua compatibilidade com a formulação. Em se tratando de pó molhável, a preferência deve ser para um composto sólido, sem hidrocicoplicidade que conduziria à compactação. Os agentes aniónicos mostram tendência maior à formação de emulsões na mistura de tuque, e podem precipitar na presença de água dura. Apesar do custo relativamente alto, os agentes não iônicos, como ésteres e éteres de polietilenoglicol são preferidos devido à baixa reatividade química, baixa fitotoxicidade, e razoável estabilidade sob condições ácidas e alcalinas. Também, não são afetados por água da chuva (3).

Outro componente essencial da formulação pó molhável é o inerte. As argilas, comumente usadas para esse fim, e tão facilmente disponíveis em grandes quantidades e baixo custo, possuem características que simplificam a manufatura e aplicação do produto. O papel do inerte está longe de ser apenas o de diluente sólido. Materiais finamente dividos, como argilas e óxidos, quando adicionados à suspensão podem, sob certas condições, eliminar a formação de sedimentos compactados. Óxidos, como silício e alumina, e argila como atapulgita e montmorilonita, são capazes de formar um redemoinho tridimensional no meio líquido, com características reológicas específicas. Essa estrutura reticular deve ser
suficientemente elástica para suportar a massa das partículas em suspensão, e suficientemente viscosa para evitar a sedimentação individual. O exato mecanismo pelo qual tais sólidos finamente divididos impedem a sedimentação de suspensões não é bem conhecido, mas algumas características dessas propriedades estruturadoras podem ser explicadas. As argilas, por exemplo, são compostas de partículas laminadas que variam de alguns centésimos a várias micras de diâmetro. Esses laminados são feitos pela sobreposição de uma ou mais camadas unitárias. Quando a argila é colocada em água, ocorre enchamento, com a penetração de moléculas de água entre as camadas. A presença desse tipo de estrutura na fase continua dificulta a sedimentação de partículas maiores presentes na suspensão concentrada (7).

A qualidade de cada produto formulado é controlada de diferentes maneiras, dependendo do tipo de formulação. No Brasil, são exigidos para fins de registro e fiscalização, entre outros, certificado de análise química e física, expedidos por laboratórios credenciados. A análise química determina o teor de princípio ativo na formulação, e os testes físicos garantem boa estabilidade do produto quando da preparação da calda e aplicação no campo. Os testes físicos são executados de acordo com a norma NBR-8511, da Associação Brasileira de Normas Técnicas (2).

A suspensibilidade é um dos testes físicos exigidos no certificado de análise para registro de agrotóxicos, para formulações do tipo pó molhável, suspensões concentradas e grânulos auto-dispersíveis em água. As organizações internacionais como a Food and Agricultural Organization of the United Nations e a World Health Organization, e a literatura especializada, entre outras a Collaborative International Pesticides Analytical Council (5) e a Association of Official Analytical Chemists, recomendar que, para formulações de fungicidas, a suspensibilidade do princípio ativo seja de 60% e, para as outras classes de defensivos, 50%. A exigência de que a suspensibilidade seja uma medida do estagio do princípio ativo em suspensão, implica na inclusão de sua dosagem na fração decantada. Entretanto, tal como executado hoje no país, o método determina apenas a porcentagem de sólidos insolúveis em suspensão, o que inclui, por exemplo, a carga inerte. Eliminar a dosagem do ativo representa grande economia de tempo e trabalho, visto que os métodos descritos na literatura incluem etapas de extração muito elaboradas. Porém, a modificação de qualquer etapa de um método analítico pressupõe embasamento em resultados experimentais que a justifique.

Com o objetivo de validar o teste de suspensibilidade da norma NBR-8511 foram determinadas a suspensibilidade de 9 formulações pó molhável de fungicidas e inseticidas pelos métodos CIPAC e ABNT. A avaliação do método de suspensibilidade, proposto na NBR-8511 pressupõe a confirmação experimental das seguintes hipóteses:

- o comportamento do princípio ativo é um reflexo do comportamento de todos os sólidos insolúveis presentes na suspensão;
- o valor de suspensibilidade medido para a somatória dos componentes insolúveis pode ser considerado como boa estimativa do valor de suspensibilidade do princípio ativo.

2 MATERIAIS E MÉTODOS

2.1 Materiais

Critérios adotados:
- a metodologia de determinação da porcentagem de suspensibilidade das formulações devem estar disponíveis nos boletins da FAO, jornais da AOAC, e manuais da CIPAC (5).
- as amostras das formulações selecionadas constam do arquivo de retenção da CATI, e estão descritas na tabela 2.1.
- as novas amostras são pós molháveis, e estão distribuídas entre as classes fungicidas (captan, acetato de trifenil estanho, oxicloreteto de cobre, fosetyl-Al, enoxf) e inse-
TABELA 2.1 - INGREDIENTES ATIVOS FORMULADOS, COMO PÓS MOLHÁVEIS SELECIONADOS PARA COMPARAÇÃO ENTRE MÉTODOS DE SUSPENSIBILIDADE ABNT E CIPAC E TÉCNICA ANALÍTICA EMPREGADA NA SUA DETERMINAÇÃO

<table>
<thead>
<tr>
<th>Nome químico</th>
<th>Nome Técnico</th>
<th>Método de Análise</th>
<th>Fórmula</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-(triclorometiltio)</td>
<td>Captan</td>
<td>cromatografia à gás</td>
<td></td>
</tr>
<tr>
<td>4-ciclonexeno-1,2-di-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>carbonoxida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acetato de trifenil</td>
<td>acetato de</td>
<td>titulação potencimétrica</td>
<td></td>
</tr>
<tr>
<td>estanho</td>
<td>trifenil estanho</td>
<td></td>
<td></td>
</tr>
<tr>
<td>oxicloro de cobre</td>
<td>oxicloro de</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cobre</td>
<td>cobre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alumínio-tris (etilfosfonato)</td>
<td>Fosetyl-Al</td>
<td>titulação potencimétrica</td>
<td></td>
</tr>
<tr>
<td>enxofre</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,0 dietil O-(2 isopropil-4-metil-6-pirimidil fosfotilato)</td>
<td>Diazinon</td>
<td>cromatografia à gás</td>
<td></td>
</tr>
<tr>
<td>0,5 - dimetil-N-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>acetil-fosfoamidotico</td>
<td>Acephate</td>
<td>cromatografia à gás</td>
<td></td>
</tr>
</tbody>
</table>

2.2.1 Métodos Potenciométricos

Determinação de cobre (cobre total) - Iões cúblicos são formados por digestão em meio ácido e reduzidos com iodo de potássio. No processo de redução forma-se iodo cuproso e iodo; o último é titulado com tiosulfato de sódio.

Determinação de enxofre - o enxofre é convertido a tiosulfato quando aquecido com sulfito de sódio.

\[
S + Na_2SO_3 \rightarrow Na_2S_2O_3
\]

O tiosulfato é então titulado com solução padrão de iodo, e o produto final da titulação é determinado potenciométricamente.

Determinação de phosetil-Al - Phosetil-Al é determinado por saponificação total da função éster em meio alcalino, e oxidação seletiva do fosfato formado, por excesso de iodo em meio aquoso tamponado. O excesso de iodo é titulado com solução padrão de tiosulfato. O ponto final da titulação é detectado amperometricamente pela técnica "dead-stop" (8).

2.2.2 Cromatografia gasosa

acephate: 0,5-dimetil-N acetil - fosfotitico: a massa seca de ensaio ABNT, foi usada para a determinação do ativo após extração com acetona, por cromatografia gasosa.

diazinon: 0,0 dietil O-(2 isopropil-4-metil-6 pirimidil fosfotitico) - o ativo foi extraído com éter de petróleo em ba-
rente de ar e o sólido remanescente dissolvido em acetona e transferido quantitativamente para um balão volumétrico.

captan: N-(triclorometiltio)-4-ciclohexeno-1,2-dicarbonamida - O ativo foi extraído em Soxhlet com cloroformo por 2:30 horas. O extrato foi submetido a secagem com corrente de ar, sendo a seguir lavado com acetona diversas vezes. A nova solução foi transferida para balão de 100ml, e uma aliquota desta solução foi então injetada no cromatógrafo.

2.2.3 Métodos de suspensibilidade

Suspensibilidade ABNT: suspender 2,5 g do produto em água dura, (5) em proveta padrão de 250 ml, e deixar a suspensão em repouso por meia hora. Após este período, 9/10 da suspensão são cuidadosamente retirados por sucção, filtrados, e a massa de sólidos sedimentados é então determinada.

Suspensibilidade CIPAC: o teste deve ser executado com as dosagens máxima e mínima de uso do produto, e o teor de ativo na fração decantada deve ser dosado pela metodologia analítica apropriada. A ressuspensibilidade é obtida quando a suspensão é deixada em repouso por meia hora, agitada e, após, no novo período de repouso, testada.

Suspensibilidade do captan: A suspensibilidade ABNT foi determinada da maneira usual, porém, para este composto as dosagens máxima e mínima de uso diferem consideravelmente das 2,5g/250ml recomendadas pela ABNT, verificou-se o teor de sólidos em suspensão para estas condições. Para a determinação da suspensibilidade CIPAC procedeu-se ao teste normalmente, e o resíduo decantado foi filtrado em papel de peso conhecido. Após secagem até peso constante em estufa a 60°C, o ativo foi extraído em Soxhlet com cloroformo por 2:30 horas. O extrato foi submetido a secagem com corrente de ar. O buquê foi então lavado com acetona diversas vezes e a nova solução transferida para balão de 100 ml. Uma alla-

quota desta solução foi então injetada no cromatógrafo. Paralelamente a estes ensaios, foram realizados controles com o produto formulado de concentração conhecida. Os resultados permitem afirmar que a extração nestas condições é quantitativa.

Oxicloreto de cobre: A suspensibilidade CIPAC, foi determinada com uma suspensão de 2,5g de produto em 250ml de água dura. Esta proporção não corresponde exatamente às dosagens máxima e mínima de uso, mas a valor intermediário.

3 RESULTADOS E DISCUSSÃO

Conforme pode ser visto na Tabela 3.1, os resultados de suspensibilidade e ressuspensibilidade ABNT e CIPAC são muito próximos, para a maioria das formulações testadas. Os valores obtidos pelos dois métodos são coincidentes para princípios ativos praticamente insolúveis (oxicloreto de cobre e enxofre) tanto para boas formulações (Susp. > 80%) como para formulações pobres (Susp. < 60%). Estes resultados são esperados para formulações que contêm muito baixa percentagem de inerte (< 6%), uma vez que a fração decantada é formada quase exclusivamente pelo princípio ativo.

Valores muito altos (> 100) de suspensibilidade ABNT são encontrados sempre que a solubilidade do ingrediente ativo ou dos adjuvantes for elevada. Este fato foi verificado para as formulações dos agrotóxicos que contêm o ativo phosphinyl-Al e acephate.

Por seu caráter restritivo, (deve ser necessariamente executado com 2,5g do produto) o teste ABNT nem sempre reproduz as condições de estabilidade para a qual a formulação foi projetada. Assim, para o ativo diazinon, cuja dosagem de uso é 0,3g do produto/250ml, os resultados mostram que a suspensão preparada para o teste ABNT não reflete o desempenho do produto no campo. A dispersão 0,3g/250ml (0,12%) apresenta boa suspensibilidade tanto em relação aos sólidos quanto em relação ao teor do ativo.
LIDADE CIPAC E ABNT, PARA NOVE AMOSTRAS DE ABAC轴VO DE RETENÇÃO DA CATI

<table>
<thead>
<tr>
<th>PRINCÍPIO ATIVO</th>
<th>TEOR DE ATIVO</th>
<th>SUSP/ABNT</th>
<th>RESSUSP ABNT</th>
<th>SUSP/CIPAC</th>
<th>RESSUSP CIPAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxicloro de cobre amostra A</td>
<td>496,4g/kg (CuO)</td>
<td>89,64</td>
<td>95,94</td>
<td>88,80</td>
<td>89,73</td>
</tr>
<tr>
<td>Oxicloro de cobre amostra B</td>
<td>358,4g/kg (CuO)</td>
<td>86,16</td>
<td>87,12</td>
<td>80,3</td>
<td>-</td>
</tr>
<tr>
<td>Fosetyl AL</td>
<td>703,01g/kg</td>
<td>102,89</td>
<td>103,37</td>
<td>98,00</td>
<td>99,9 + 1</td>
</tr>
<tr>
<td>Enxofre amostra A</td>
<td>818,91g/kg</td>
<td>90,85</td>
<td>91,68</td>
<td>87,29</td>
<td>87,09</td>
</tr>
<tr>
<td>Enxofre amostra B</td>
<td>794,49g/kg</td>
<td>10,46</td>
<td>9,96</td>
<td>12,59</td>
<td>9,17</td>
</tr>
<tr>
<td>Acetato de trifenil etano</td>
<td>194,71g/kg</td>
<td>77</td>
<td>79</td>
<td>83</td>
<td>84</td>
</tr>
<tr>
<td>Diazinon</td>
<td>400g/kg</td>
<td>40</td>
<td>51</td>
<td>98</td>
<td>68</td>
</tr>
<tr>
<td>Captan</td>
<td>830g/kg</td>
<td>42,5</td>
<td>41</td>
<td>40</td>
<td>48</td>
</tr>
<tr>
<td>Acephate</td>
<td>747,65</td>
<td>96</td>
<td>95</td>
<td>92</td>
<td>90</td>
</tr>
</tbody>
</table>

4 CONCLUSÃO

Os resultados deste trabalho indicam que o teste ABNT representa simplificação útil e econômica para fins de fiscalização de defensivos agrícolas.

ABSTRACT

Suspensibility is one of the physical tests required in Brasil, according to the law (Portaria 6, 08-02-85) for registrations of pesticides presented as wettable powders, flowables, and self dispersible granules. International Organizations (e.g. CIPAC) recommend the limits of 60% for fungicides and 50% for other classes of pesticides, when suspensibility is expressed in terms of active ingredient. Although internationally recommended tests require the chemical dosage of the pesticide, Brazilian legislation (according to the law, the test is carried out following ABNT-standard NBR-8511) requires only determination of the percentage of solids in suspension. The purpose of this paper is to test the validity of ABNT method. Nine samples, supplied by CATI (State organization for control of pesticides) were selected, and suspensibility determined by the two methods. Results indicate that ABNT simplification is useful and economic for fiscalization purposes.

REFERÊNCIAS BIBLIOGRÁFICAS

7 TADROS, T.F. Control and assessment of the physical stability of pesticidal suspension concentrates. Chemistry and Industry. v. 15, p. 211-18, 1980: