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 Resumo  

Predição do material combustível superficial de cerrado no parque estadual do cantão a partir de imagens de 

sensor RGB aerotransportado. A quantificação do material combustível em área típica do Cerrado é limitada 

pela dificuldade em obtenção de dados, pelos altos custos e pelo elevado tempo gasto em campo. Em busca de 

alternativas que facilitem a obtenção dos dados, a estimativa indireta vem sendo aplicadas, resultando equações 

locais para a predição da carga em função de variáveis de fácil obtenção. Nesse contexto, buscou-se desenvolver 

equações locais para estimar a carga de material combustível, em área de Cerrado, no Parque Estadual do 

Cantão - Tocantins, em função de variáveis mensuradas em campo e variáveis digitais provenientes do 

processamento de imagens digitais RGB (Red, Green and Blue) adquiridas por meio de aerolevantamentos. 

Com o processamento das imagens digitais, extraiu-se as seguintes variáveis: altura média no modelo digital 

(hMDA) e densidade de pontos no modelo tridimensional (DPM). Após o levantamento aéreo, realizou-se a 

amostragem em campo, coletando as seguintes variáveis: altura média em campo (hc), quantidade de indivíduos 

(Qti) e Material Combustível Total (MCT). Posteriormente, foram ajustadas equações, adotando todo o 

conjunto amostral. O critério de seleção do modelo foi com base ao R²aj, Syx% e gráfico de resíduos, em que 

foram obtidos coeficiente de determinação ajustados (R²aj) de 0,12 a 0,83 e Erro padrão residual (Syx%) de 

19,4 a 44%. Foram observados que o uso de pontos de controle realizado pelo MDA reduz a ocorrência de 

erros, as correlações entre as variáveis analisadas indicam a importância de considerar múltiplos fatores ao 

realizar análises e predições nas áreas de estudo. 

Palavras-chave: Sensoriamento Remoto, incêndios florestais, modelagem 

Abstract 

Predicting surface forest fuels on the cerrado in Cantão state park from airborne RGB sensor images. Forest 

fuel quantification in a typical Cerrado area is difficult due to the high costs and long field times associated 

with collecting data. In search of alternatives that facilitate data collection, indirect estimation has been studied, 

resulting in local equations for predicting the load based on easily obtainable variables. In this context, we 

sought to develop local equations to estimate the load of forest fuel, in a Cerrado area, in the Cantão Park State 

– Tocantins. As a function of variables measured in the field and digital variables from the processing of RGB 

digital images (Red, Green and Blue) acquired through aerial surveys. With the processing of digital images, 

the following variables were extracted: mean height in the digital model (hMDA) and point density in the three-

dimensional model (DPM). After the aerial survey, field sampling was carried out, collecting the following 

variables: mean height in the field (hc), number of individuals (Qti) and Total Fuel Material (MCT). 

Subsequently, equations were fitted, adopting the entire sample set. The model selection criterion was based 

on R²aj, Syx% and residual graph, in which adjusted coefficient of determination (R²aj) from 0.12 to 0.83 and 

residual standard error (Syx%) of 19.4 were obtained at 44%. It was observed that the use of control points 

performed by the MDA reduces the occurrence of errors, the correlations between the analyzed variables 

indicate the importance of considering multiple factors when performing analyzes and predictions in the study 

areas. 

Keywords: Remote Sensing, forest fires, modelling. 

_______________________________________________________________________________________ 

INTRODUCTION 

A prominent characteristic of the Cerrado biome is the accumulation of herbaceous and woody fuels. 

Soares et al. (2017) consider forest fuel to be all living or dead organic material capable of combustion (e.g. twigs, 

branches, fallen trunks, grasses, herbs, shrubs, humus, and peat) that are produced naturally or under anthropogenic 
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pressures (e.g. logging) above or below the forest floor, and can be assessed according to quantity, type, and 

arrangement. 

The amount of forest fuel in the Cerrado varies from grams to tonnes per hectare and is expressed by the 

term "load", which refers to the amount of oven-dry matter per unit area, it influenced mainly by the type, spacing, 

age of the vegetation and anthropogenic activities (SOARES et al., 2017). The load of the forest fuel is directly 

correlated with the intensity of the fire. According to Soares et al. (2017), around 1,2 t.ha-1 of fine, dry forest fuel 

becomes sufficient for the spread of fire and, with the accumulation of forest fuel in conditions favourable to fire, 

can result in the spread of forest fires to disastrous levels.  

Determining forest fuel load is a significant factor in forest fire prevention planning and relevant in 

modelling fire behaviour (SANTOS et al., 2019). In order to obtain quantitative information on forest fuel, the 

destructive method can be employed, which involves sampling forest fuels at predetermined intervals or randomly 

distributed intervals using templates of different sizes and shapes (e.g. rectangular and quadrangular) 

(GRIEBELER et al., 2020; TAVARES, 2017; SANTOS et al., 2019; SOUZA et al., 2018; WHITE et al., 2013).  

However, the destructive sampling method is considered complex due to the spatiality of the forest fuel 

on site. In addition, in large areas the survey becomes technically and financially unfeasible (DUFF et al., 2012). 

As a result, other methods have been studied and implemented, such as indirect estimates, in which local equations 

are developed to estimate the load as a function of easily obtained variables (e.g. height, blanket thickness, diameter 

and number of individuals) (SANTOS et al., 2019; SOUZA et al., 2018; BENDIG et al., 2014; JANNOURA et 

al., 2015). 

Among indirect methods, digital image processing is also notable, which is widely applied in precision 

agriculture. Particularly, UAVs (Unmanned Aerial Vehicles) are used as platforms that are capable of integrating 

high-resolution sensors to obtain digital images, thereby enabling the extraction of various vegetation parameters 

(such as height, biomass, and vegetation index) (CUNLIFFE et al., 2020; PANDAY et al., 2020; HARKEL et al., 

2019), as well as data that can be used to determine the load of forest fuel using statistical models (SANTOS et 

al., 2019).  

In this context, statistical models are essential tools, since quantifying the load of forest fuel is 

fundamental to carrying out any fire management procedure. Thus, using biophysical variables to fit regression 

equations can reduce difficult processes in the field, such as time spent travelling in areas that are difficult to access 

(SOUZA et al., 2018).  

Determining the forest fuel load using equations is still scarce. The main studies in Brazil have been 

carried out on pine, eucalyptus and araucaria plantations, located in the Atlantic Forest biome in the southern 

region (e.g. BEUTLING et al., 2012; BEUTLING et al., 2006; RIBEIRO; SOARES, 1998). However, there is a 

lack of studies on the Cerrado biome, where some of the studies that have addressed the modelling of forest fuel 

in the Cerrado biome were carried out by Santos et al. (2019), Santos et al. (2021) and Souza et al. (2018). 

In that sense, this research assumes that: i - flight parameters interfere with the quality of the products 

generated after data processing; ii - the use of Ground Control Point - GCP in georeferencing the images interferes 

with the quality of the products generated after data processing; 3 - there is a relationship between the predictor 

variables studied and the total forest fuel load (MCT). 

The purpose of this paper was to develop local equations to estimate forest fuel load of as a function of 

variables measured in the field and digital variables from the processing of RGB digital images acquired through 

aerial surveys in the Cantão State Park in the state of Tocantins. 

MATERIAL AND METHODS 

Experiment location: Cantão State Park (PEC) 

The research was carried out at four sites in the northern region of the Cantão State Park (PEC) in the 

state of Tocantins. The PEC is an integral protection conservation unit, part of the State Conservation Unit System 

(SEUC), covering an area of approximately 90,000 hectares, located at the geographical coordinates S10º26'33" 

latitude, W49º10'56" longitude, involving the municipalities of Pium and Caseara, in Tocantins (Figure 1). 
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Figure 1. Location of study areas in Parque Estadual do Cantão, Tocantins.  

Figura 1. Localização das áreas de estudo no Parque Estadual do Cantão, Tocantins. 

According to the Köppen climate classification, the region's predominant climate is type C2wA'a' - a 

humid sub-humid climate with moderate water deficiency in winter, annual potential evapotranspiration mean is 

1,500 mm, distributed in the summer at around 420 mm over the three consecutive months with the highest 

temperature, the summer is rainy and occurs between the months of October and April, and the dry winter takes 

place from May to September (SEPLAN 2012; NATURATINS, 2019). 

The study location is characterised as a recovery area, made up of areas of alluvial semideciduous seasonal 

forest, considerably anthropised in a Cerrado area (SEPLAN, 2016), with the presence of the predominant 

herbaceous species Capim-sapê (Imperata brasiliensis Trin.) and Canarana (Hymenachne amplexicaulis (Rudge) 

Nees), both belonging to the Poaceae family. 

Planning, sub-plots distribution and Ground Control Points (GCP) selection  

The aerophotogrammetric planning survey was subdivided into 3 stages: (1) distribution of the sub-plots 

and selection of the GCP and collection of the coordinates with a geodetic receiver; (2) execution of the flight plan 

and collection of the forest fuel; (3) three-dimensional reconstruction of the areas and preparation of the digital 

models. 

The plots were established using geoprocessing and remote sensing techniques, with a view to the 

logistics of travelling to the plots and critical fire areas, identified by analysing the hydrography and the scars of 

burning in the PEC. As a result, 77 sub-plots were installed throughout the experiment, with 22 sub-plots being 

distributed in plots 1, 2 and 3, while 11 plots were distributed in plot 4. 

Each plot had a rectangular area of 4.5 hectares (150 × 300 m), where sub-plots measuring 0.25 m² (0.5 

× 0.5 m) were systematically distributed. The size of the sub-plot was chosen with a view to wide sampling and 

increasing the variability of the fuel sampled. 

To demarcate the sub-plots, artificial targets made from 0.5 × 0.5 metre boards were distributed, making 

them identifiable in the images. In addition, 12 sub-plots were selected as GCP. 

Flight plan execution and forest fuel collection  

The flight was carried out using a DJI Phanton 4 multirotor with an RGB sensor measuring 1/ 2.3" with 

a resolution of 4,000 × 3,000 pixels and a focal length of 4.73 mm. The flight heights were 75 and 100 metres, 

considered as treatments, and 85% longitudinal and 85% lateral coverage was adopted for the experiment. The 

flight plan resulted in a spatial resolution of 2.5 cm and 3.4 cm (Ground Sample Distance - GSD), for flight heights 

of 75 and 100 metres respectively. 

After the flights, the mean height of the vegetation from the centre of the sub-plot in centimetres (hc) was 

collected in each sub-plot. The surface forest fuel was then collected using the destructive method, separating the 

material into the following classes: live herbaceous, dead herbaceous and total herbaceous fuels. 
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The number of individuals present (Qti) was also quantified using the bases of the stalks identified close 

to the ground after the forest fuel had been collected. 

Each fraction of surface forest fuel was weighed in the field to obtain a wet mass. Subsequently, they 

were separated into sub-samples of approximately 100g, packed and identified in kraft paper bags and dried in an 

oven at 70ºC until they reached a constant mass. Finally, the moisture content of the superficial forest fuel was 

calculated using the equation: 

𝑈 =  
(𝑀𝑈−𝑀𝑆)

𝑀𝑆
∗ 100   

Where: U, moisture content of forest fuel (%); MU, wet mass of the material at the time of collection (g); 

MS, dry mass of the material after heating (g). 

With the moisture content of the sub-sample, it was possible to determine the load of forest fuel for each 

sub-plot, in t.ha-1. In this way, the sum of the fractions of the forest fuel load can be referred to in this study as the 

Total Forest fuel (TCM) load. 

 

Three-dimensional reconstruction and digital model preparation  

 After executing the flight plan, the images were pre-aligned using the Structure From Motion (SfM) 

algorithm, and then the GCP coordinates were entered using Agisoft Metashape software. At this stage, 2 

treatments were considered in the three-dimensional reconstruction: treatment 1 - without the use of 0 GCP; 

treatment and treatment 2 - 6 GCP. 

The coordinates of the GCP were inserted into the same software using the coordinates as a reference, 

transporting these known coordinates to the images and georeferencing the block of images. 

The three-dimensional models of each plot were imported into the SAGA GIS software version 7.8.1 to 

create the Digital Surface Model (DSM), Digital Terrain Model (DTM) and Digital Height Model (resulting from 

the subtraction between DSM and DTM). The three-dimensional model was also used to generate a new variable 

called density of points in the model (DPM), which refers to the number of points in an area extrapolated to 

hectares. 

Subsequently, the average height data in the digital height model (hMDA), obtained from the difference 

between MDS and MDT, and the density of points in the model (DPM), were extracted and tabulated using GIS 

software for each sub-plot. 

Statistical analysis 

An exploratory analysis of the MCT field data was carried out in order to identify and remove possible 

outliers in the sampling. 

The data was descriptively analysed using the mean vegetation height (hc), the number of MCT 

individuals (Qti) and the frequency of these individuals. Due to the different sample sizes of the groups, the means 

were compared using the Tukey-Kramer test to identify significant differences (p < 0.05). The same procedure for 

analysing variance and comparing means was used for the entire sample set. 

Pearson's correlation analyses were carried out between the hc and Qti variables and the hMDA and DPM 

digital variables, which were considered significant at p < 0.05; p < 0.01. Correlations were then made between 

the dependent variable MCT and the field variables hc and Qti for each plot, and for the digital variables of the 

treatment with the best correlations of hMDA and DPM, and with its respective control.  

After analysing the correlation, the variables that showed significant correlations with p < 0.05; p < 0.01 

were selected for the adjustment of regression equations for each plot, using the Stepwise adjustment method, 

taking into account the dependent variable MCT in t.ha-1 and the independent variables hc and Qti and the digital 

variables hMDA and DPM, with their respective transformations x², x³, Log (x), Root (x), Ln (x), 1/x and X1*X2. 

As an additional analysis, the correlation and regression were subjected to their respective analyses again, using 

the entire sample set. The equations were selected based on the values of the coefficient of determination (R2aj) 

and standard error of the estimate in percentage (Syx%) and the graphical analysis of the residuals (goodness-of-

fit indices). Finally, the resídues was subjected to the normality and homogeneity test (Shapiro-Wilk) considering 

p < 0.05. All the steps described were carried out using the R software (version 4.1.0). 

RESULTS 

According to Table 1, there was considerable variation in the characteristic means (ȳ). This variation is 

indicated by the difference between the means and suggests that the samples have different levels of each 

characteristic. In addition, the description of the variation in the coefficients of variation (CV%) across the plots 
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for each trait indicates that there is great variability between the samples for each characteristic. This variability 

can be explained by various factors, such as soil and species variation. 

Table 1. Statistical summary of sample characteristics. 

Tabela 1. Resumo estatístico das características da amostra. 

Plot n Specie FrA Fr%  MCT (t.ha-1) hc (cm) Qti (ind.ha-1) 

1 17 I. brasiliensis 17 100 
ȳ 21.8 14.4 1,070,588 

CV% 50.1 40.5 27.7 

2 21 I. brasiliensis 21 100 
ȳ 21.8 17.6 892,000 

CV% 62.32 44.9 45.9 

3 20 
I. brasiliensis 15 75 ȳ 19.3 17.3 2,180,952 

H. amplexicaulis 5 25 CV% 48.2 29.8 58 

4 11 H. amplexicaulis 11 100 
ȳ 33.4 19.1 1,043,636 

CV% 37.6 23.7 57.2 

Total 69 
I. brasiliensis 53 76.8 ȳ 22.7 16.9 5,186,816 

 
H. amplexicaulis 16 23.2 CV% 51 36.3 58.1  

Where: FrA, absolute frequency; Fr%, relative frequency; ȳ mean; CV% coefficient of variation; n, number of samples; TCM, Total Forest 

fuel; hc, average height in the field; Qti, number of individuals. 

When evaluating the results in Table 2, it can be seen that for hMDA, for the 75 m flight in plot 1, the 

treatments were statistically equal, while the other plots were statistically different compared to the control. In 

GPC treatment 6, it was observed that flight altitude had no significant impact on hMDA values (Table 2). 

Therefore, to optimise efficiency and save time, it is recommended to fly at an altitude of 100 metres, except for 

plot 4. However, it is important to emphasise that this recommendation does not apply to plot 4, where it may be 

necessary to fly at a different altitude to obtain the desired results. 

Table 2. Means comparison by using the Tukey-Kramer test for the hMDA variable. 

Tabela 2. Comparação de médias pelo teste Tukey-Kramer para variável hMDA. 

Variable Plot 
Flight / voo 

(m) 
0 GCP 6 GCP Control (hc) 

hMDA 

1 
75 13.5 Ba 13.3 Aa 14.4 a 

100 9.3 Aa 12.8 Ab 14.4 c 

2 
75 8.7 Aa 9 Aa 17.6 b 

100 11.2 Ba 10Aa 17.6 b 

3 
75 8.1 Ab 6.7 Aa 17.33 c 

100 8 Aa 7.3 Aa 17.33 b 

4 
75 13.5 Ab 11 Ba 22.36 c 

100 17.5 Bb 9.8 Aa 22.36 c 

TOTAL 
75 9.8 Aa 9.7 Aa 16.9 b 

100 10.7 Aa 10.1 Aa 16.9 b 

Where: GCP = Ground Control Point; hMDA = mean height in the digital model. 

After examining the data relating to the DPM variable in different 75 and 100 metre flights (Table 3), in 

which the 0 GPC treatment was used, it was found that only the first portion of the 75 metre flight and the fourth 

portion of the 100 metre flight showed statistically similar results to their respective control groups. This means 

that the other flight plots showed statistically significant differences compared to the controls, indicating that the 

application of the treatment had a different effect to what was expected. 

 

 

Table 3. Means comparison of using the Tukey-Kramer test for the DPM variable. 
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Tabela 3. Comparação de médias pelo teste Tukey-Kramer para variável DPM. 

Variable Plot 
Flight/voo 

(m) 
0 GCP 6 GCP Control (hc) 

DPM 

1 
75 1.3E+06 Bb 7.5E+05 Aa 1.0E+06 b 

100 7.2E+05 Aa 7.2E+05 Aa 1.0E+06 b 

2 
75 1.2E+06 Ba 1.1E+06 Ba 8.9E+05 b 

100 6.3E+05 Aa 6.3E+05 Aa 8.9E+05 b 

3 
75 1.0E+06 Ba 1.1E+06 Ba 2.1E+06 b 

100 6.0E+05 Aa 6.2E+05 Aa 2.1E+06 b 

4 
75 6.4E+05 Aa 7.7E+05 Aa 1.0E+06 b 

100 8.1E+05 Bb 7.6E+05 Aa 1.0E+06 b 

TOTAL 
75 6.7E+05 Aa 9.8E+05 Ab 1.3E+06 c 

100 6.7E+05 Aa 1.1E+06 Ab 1.3E+06 c 

Where: GCP = Ground Control Point; DPM = point density in the three-dimensional model. 

Table 4 shows the coefficient of determination (r²) for the respective treatments. It was observed that the 

GCP 6 treatment showed statistically significant results, with r² variations between 0.57 and 0.85, with plot 1 

standing out with an r² of 0.85. 

On the other hand, the GCP 0 treatment showed a weak correlation with hc, except in plot 4, which 

showed an r² of 0.55, significant at a 5% probability level. Furthermore, when considering the entire sample set (n 

= 69), there was a reduction in the relationship between hc and hMDA, resulting in an r² of 0.57, which is still 

considered significant at a 1% probability level. Concerning the Qti variable, there was no significant correlation 

with DPM, according to the analysis of residuals and the comparison of means. 

Table 4. Pearson's correlation analysis for variable hc and Qti. 

Tabela 4. Análise de correlação de Pearson para variável hc e Qti. 

Plot Variable 
hMDA  

(0 GCP) 

hMDA  

(6 GCP) 
Plot Variable 

DPM  

(0 GCP) 

DPM  

(6 GCP) 

1 

hc 

0.15 0.85*** 1 

Qti 

0.09 0.32 

2 0.23 0.67** 2 0.2 0.29 

3 0.25 0.63** 3 0.3 0.1 

4 0.55* 0.65** 4 0.3 0.32 

Total 0.3 0.57** Total 0.3 0.12 

Where: GCP = Ground Control Point; hMDA = mean height in the digital model; DPM = point density in the three-dimensional model. * 

significant at 5% probability; ** significant at 1% and *** significant at 0.1% probability. 

Table 5 shows the degree of Pearson's correlation between the MCT variable and the hc and hMDA 

variables for the GPC 6 treatment on the 100 m flight. When evaluating the relationship between fuel material and 

hc, a strong relationship was observed between height and fuel material load, ranging from r = 0.60 to r = 0.85. 

hMDA also showed better correlations with fuel load, ranging from 0.60 to 0.90, except for plot 4, where there 

was no significant relationship. When considering the entire sample set in the analysis (n = 69) there was a 

reduction in the relationship, however, it was considered significant at the 0.1% probability level. 

 

 

 

 

Table 5. Correlation analysis for MCT variable. 
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Tabela 5. Análise de correlação de Pearson para variável MCT. 

Plot Variable hc hMDA (6 GCP) 

1 

MCT 

0.85*** 0.90*** 

2 0.62** 0.75*** 

3 0.64** 0.65** 

4 0.80** 0.19 

Total 0.60** 0.60** 

Where:  hMDA = mean height in the digital model; hc = mean height in the field; MCT = Total Forest fuel. * significant at 5% probability; ** 
significant at 1% and *** significant at 0.1% probability. 

Given the importance of the relationship between MCT and the field and digital variables, regression 

analyses were carried out to predict the forest fuel. The goodness-of-fit and accuracy statistics of the models 

selected using the Stepwise method are shown in Table 6. 

The equations generated with the hMDA predictor showed great relevance for plots 1 and 2, with values 

of p < 0.001 and R²aj = 0.82 and R²aj = 0.62, respectively. Although the hMDA predictor in the equation generated 

for plot 3 was significant with a value of p < 0.05, it showed fitting results with R²aj = 0.33 and a high residual 

with Syx% = 39.2. Plot 4 fitted the DPM variable in its equation; however, the addition of the predictor was not 

significant and showed the lowest goodness-of-fit values among plots, with R²aj = 0.09 and Syx% = 40.5. 

When evaluating the hc predictor, in all situations the regression equations obtained values of p < 0.001, 

i.e. the addition of the predictors was significant and related to changes in the response variable. For the fitted 

equations, the coefficient of determination ranged from R²aj = 0.39 to R²aj = 0.70 and the Syx% ranged from 20 

to 34.2, with plots 1 and 4 having higher R²aj and Syx% statistics than the other plots. 

When the equation was fitted for the entire sample set (n=69), the hc variable stood out when compared 

to hMDA with R²aj = 0.7 and R²aj = 0.48, respectively. Also, looking at the relationship between observed and 

estimated values in Figure 2, it can be seen that using the hc predictor, the values are closer to the trend line when 

compared to the hMDA predictor. 

Table 6. Regression analysis and goodness-of-fit for MTC prediction. 

Tabela 6. Análise de regressão e estatísticas de qualidade das equações para predição de MTC. 

Plot Y X Coefficient R² R²aj Syx% F (interaction) 

1 MCT 
ß0 2.296 

0.83 0.82 21.6 77.3(p<0,001) 
hMDA 1.46*** 

2 MCT 
ß0 13.12*** 

0.62 0.6 30 29.6(p<0,001) 
hMDA² 0.065*** 

3 MCT 
ß0 3.75 

0.33 0.32 39.2 10.2(p<0,05) 
hMDA 2.13* 

4 MCT 

ß0 45 

0.09 0 40.5 0.42(p<0,668) 1/DPM 4498621 

Raiz (DPM) -0.007 

Plot Y X Coefficient R² R²aj Syx% F (interaction) 

1 MCT 
ß0 -20.148 

0.78 0.7 24.29 40.4(p<0,001) 
hc 1.5978*** 

2 MCT 
ß0 13.631 

0.55 0.48 31.22 18.6(p<0,001) 
hc³ 0.001* 

3 MCT 
ß0 9.401* 

0.42 0.39 34.2 13.7(p<0,001) 
hc² 0.031*** 

4 MCT 
ß0 -51.93 

0.75 0.69 20 20.6(p<0,001) 
RAIZ (hc) 18.17*** 

Total 

MCT 
ß0 6.16** 

0.49 0.48 35 64.3(p<0,001) 
hMDA 1.54*** 

MCT 
ß0 -2.24 

0.75 0.7 25 166.2(p<0,001) 
hc 1.42*** 

Where: R²aj = adjusted coefficient of determination; Syx% = standard error in percentage; hMDA = mean height in the digital model; hc = 

mean height in the field; MCT = Total Forest fuel; R² = coefficient of determination; DPM = density of points in the three-dimensional model. 
* significant at 5% probability; ** significant at 1% and *** significant at 0.1% probability. 
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Figure 2. Observed versus predicted linear regression for the entire sample set. a) refers to the use of the hMDA 

variable to predict the load of forest fuel; b) refers to the use of the variable hc to predict the load of 

forest fuel (t.ha-1); confidence interval represented in shaded on the trend line. 

Figura 2. Regressão linear observado versus estimado para todo conjunto amostral. a) refere-se ao uso da variável 

hMDA para estimar a carga de material combustível; b) refere-se ao uso da variável hc para estimar a 

carga de material combustível (t.ha-1); intervalo de confiança representado em sombreado na linha de 

tendência. 

DISCUSSION 

Table 1 shows a high degree of dispersion of data in relation to the mean.  According to Rossi (2020), 

reducing data variability reduces standard deviation and improves analysis accuracy. Although sampling 

variability is difficult to reduce when vegetation is heterogeneous, as it is in the Cerrado. In order to ensure that 

the values of the interest variable vary slightly from one sample to another, Pelliccino Netto and Brenna (1997) 

recommend dividing heterogeneous populations into homogeneous strata. 

When evaluating the results in Table 2, several factors affect the accuracy of the products, among which 

the number of GCP and their distribution in the study area are especially significant (MARTÍNEZ-CARRICONDO 

et al., 2018). These same authors noted in their research that among the distributions evaluated, the most reliable 

results were obtained with the combination of GCP distribution at the edges and distribution stratified by the 

interior of the study region. 

It can also be seen that the hMDA averages are lower than the hc values, characterising an underestimation 

of height. The same pattern was observed by Bendig et al. (2014), using images based on airborne RGB sensors 

to estimate the height of cultivars in agriculture. 

Although the analyses of the means presented in Table 2 shows that in most cases hMDA was statistically 

different to hc, the variable hc and hMDA showed strongly significant correlations in all situations (Table 4). The 

relationship between actual and predicted height was observed by the authors Bendig et al. (2014) and Han et al. 

(2018), in which strong linear correlations were found with coefficients of determination ranging from 0.72 to 

0.92. 

Looking at the correlation values (Table 5), we note the importance of the height and MCT relationship. 

The most predominant species sampled in the experiment (H. amplexicaulis and I. brasiliensis) are C4 metabolism 

plants that grow upright and straight, respectively. C4 grasses are plants with a high photosynthetic rate, favoured 

mainly in high light and temperature environments, and this characteristic allows for a greater increase in biomass 

per unit of time (TAIZ; ZEIGER, 2017). In addition, Bendig et al. (2014) and SOUZA et al. (2018) showed 

significant relationships between height and dry mass, making the premise suitable for estimating the load of forest 

fuel employing height. 

The equations fitted to predict forest fuel in the different plots performed similarly to Pearson's 

correlations when using the hc, hMDA and DPM predictors, with the highest coefficient of determination being 

found in plot 1, in the fit in which the hMDA variable was selected. Plot 4, on the other hand, had the worst results 

in terms of both correlation and regression when the variable DPM was selected, and the same low results were 

found in plot 3. 

During the sampling of plots 1 and 3, the species Hymenachne amplexicaulis was found, which is 

characterised by its high rate of dry mass accumulation in short time intervals, as previously reported, and, when 

observing the graph of observed versus estimated values in Figure 2, it can be seen that the greatest distance of the 
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values from the mean trend line is located mainly in regions of greater accumulation of forest fuel, in accordance 

with the idea that both the height and the number of individuals are not sufficient to explain the MCT of the species 

H. amplexicaulis.  

Santos et al. (2021) worked with relationships and modelling of the surface forest fuel of the grassland 

savannah in the Jalapão region - Tocantins, and fitted linear regression equations with herbaceous height, blanket 

height, number of individuals and number of species. They found that the best equations for prediction of dead 

herbaceous material and herbaceous material were fitted with herbaceous height and blanket height, R²aj = 0.63; 

Syx% = 39.05 and R²aj = 0.73; Syx% = 28.92, respectively. 

The vegetation heterogeneity and the difficulty of access to certain areas can affect the quality and 

representativeness of the samples collected. This in turn can affect the statistical analyses carried out. To overcome 

these limitations, it is important to adapt the sampling strategy to the environment concerned. For instance, it is 

possible to divide the area into smaller, more homogeneous units and randomly sample within each of these units. 

Another workaround is to use specific sampling methods for each vegetation type or terrain, such as transects or 

fixed plots. 

Our results show that it is possible to use unmanned aerial vehicles (UAVs) to estimate total forest fuel 

load. It is therefore a tool that has proved effective in situations where there is a need for faster field analysis. As 

long as it is affordable and can be done in different types of phytophysiognomies, it can be used at any time of the 

year. Further studies are suggested to evaluate the effectiveness of using UAVs by assessing the representativeness 

of the sample in relation to the total population and taking into account other sources of variation, such as climatic 

conditions and seasonality, to ensure the reliability of the results obtained. 

CONCLUSION 

• The input variables hc and Qti, digital variables hMDA and DPM showed positive correlations for building 

regression models to predict the total forest fuel load. 

• Control points used by the MDA during georeferencing ensure more accurate results and reduce the errors 

possibility. 

• Additionally, flight height does not influence hMDA values, which is helpful when choosing the ideal height 

for surveying. 

• Lastly, correlations between variables indicate the importance of considering multiple factors in the analysis 

and prediction of the study areas. 
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