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Resumo 

A programação linear pode auxiliar metaheurísticas em um problema de planejamento da produção florestal? 
O planejamento da produção florestal requer a utilização de modelos matemáticos que otimizam a utilização 

dos recursos disponíveis. Nesse sentido, é importante que trabalhos envolvendo a melhoria dos processos de 

tomada de decisão sejam realizados. Desse modo, este trabalho apresenta a avaliação de uma alternativa para 

aumentar a performance de metaheurísticas quando aplicadas à busca de soluções para um problema de 
planejamento da produção florestal. Testou-se a inclusão de uma solução obtida pelo arredondamento da 

solução ótima da programação linear para o problema relaxado. Tal solução foi incluída na população inicial 

das metaheurísticas clonal selection algorithm, genetic algorithm, simulated annealing e variable 

neighborhood search quando utilizadas para gerar planos de colheita e plantio em uma área de 4.210 ha, 
contendo 120 unidades de manejo com idades variando entre 1 e 6 anos. Os mesmos algoritmos foram 

executados sem a inclusão da mencionada solução na população inicial. Os resultados mostraram que a 

performance dos algoritmos clonal selection algorithm, genetic algorithm e variable neighborhood search foi 

substancialmente melhorada. não foram observados efeitos positivos na performance da metaheurística 
simulated annealing. Conclui-se que o arredondamento da solução para o problema relaxado é uma boa 

alternativa para gerar uma solução inicial para metaheurísticas. 

Palavras-chave: Pesquisa Operacional; Manejo Florestal; Inteligência Artificial 

Abstract 

The planning of forest production requires the adoption of mathematical models to optimize the utilization of 

available resources. Hence, studies involving the improvement of decision-making processes must be 

performed. Herein, we evaluate an alternative method for improving the performance of metaheuristics when 

they are applied for identifying solutions to problems in forest production planning. The inclusion of a solution 
obtained by rounding the optimal solution of linear programming to a relaxed problem is investigated. Such a 

solution is included in the initial population of the clonal selection algorithm, genetic algorithm, simulated 

annealing, and variable neighborhood search metaheuristics when it is used to generate harvest and planting 

plans in an area measuring 4,210 ha comprising 120 management units with ages varying between 1 and 6 

years. The same algorithms are executed without including the solutions mentioned in the initial population. 

Results show that the performance of the clonal selection algorithm, genetic algorithm, and variable 

neighborhood search algorithms improved significantly. Positive effects on the performance of the simulated 

annealing metaheuristic are not indicated. Hence, it is concluded that rounding off the solution to a relaxed 
problem is a good alternative for generating an initial solution for metaheuristics.  

Keywords: Operational Research; Forest Management; Artificial Intelligence 
 

INTRODUCTION 

Timber production planning instigates research pertaining to mathematical modeling. Since the early 

studies by Curtis (1962), Loucks (1964), Kidd et al. (1966), Nautiyal and Pearse (1967), and Ware and Clutter 

(1971), mathematical planning models have been proposed and applied to identify planting, harvesting, and 

forestry activities that must be applied to each forest compartment. 

The models proposed by Johnson and Scheurman (1977), i.e., Model Types I and II, serve as basic models 

for forest planning and references for several relevant studies (Araújo Júnior et al. (2018), Silva et al. (2003), and 

Rodrigues et al. (2004)). Areas of the management unit subject to a certain silvicultural prescription can be 

fractionated in these models. In several cases, the best management alternative must be defined for each stand 

without permission to fractionate its area, which results in binary responses (harvesting or not harvesting a stand 

in a specified year). This requires the use of whole mixed programming (Silva et al., 2003) or metaheuristics 

(Araújo Júnior et al. (2018), Matos et al. (2019), and Ferreira et al. (2018)). 

Previously, the abovementioned problem was solved by rounding the mathematical solution. However, 

this alternative is not applicable when the management unit is a stand (Silva et al., 2003). Integer linear 
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programming and its variations (primarily mixed and binary whole) can be employed depending on the complexity 

of the modeled situation. However, it can result in a combinatorial nondeterministic polynomial (NP) problem, 

with no guarantee of an algorithm that returns an answer to the problem in a timely manner. 

Researchers of artificial intelligence have proposed several algorithms for solving combinatorial 

problems. Examples include heuristics and metaheuristics (Jin et al. (2016), Dong et al. (2016), Caro et al. (2003), 

Meignan et al. (2012), Rodrigues et al. (2004a), Rodrigues et al. (2004b), and Araújo Júnior et al. (2017)).An 

initial solution must be determined to ensure the efficiency of metaheuristics (Gaspar–Cunha et al., 2016). A good 

algorithm allows an algorithm to converge quickly to regions of interest in the solution space. Several authors 

indicated that analysts must consider all aspects that render the generated solutions viable when modeling a 

complex problem.  

A method for generating good initial solutions to a problem with one or more binary or integer variables 

is to apply linear programming to a relaxed problem (Akbulut et al., 2017). Subsequently, deterministic algorithms 

(i.e., simplex) can be used to solve the problem as they are not restricted by the fact that the variables are integers. 

Herein, we present an evaluation complementary to that developed by Akbulut et al. (2017). The objective 

of this study was to test the methodology proposed by previous authors with some modifications to solve a forest 

production planning problem. The test was performed by employing four metaheuristics, i.e., clonal selection 

algorithm (CSA), genetic algorithm (GA), simulated annealing (SA), and variable neighborhood search (VNS), 

and then their results were compared. 

MATERIAL AND METHODS 

Case Study 

In the present study, data from a eucalyptus forest measuring 4,210 ha were used. The data contained 120 

management units (stands) with ages ranging from 1 to 6 years. The distributions of area per age were as follows: 

339, 768, 1031, 601, 958, and 513 ha for 1, 2, 3, 4, 5 and 6 years of age, respectively. The estimates of wood 

production in each stand and age were obtained using the equation Vi = 6,09 – 117.55*Ii-1*Si-1, where Vi is the 

production of stand i (m3 ha-1) at age Ii (years), and Si is the site index of stand i (m). The site index values ranged 

from 22 to 31 m for the index age of 6 years. 

The possibility of harvesting wood at the ages of 5, 6, and 7 years was considered, with immediate 

planting after cutting was performed and a planning horizon of 16 years. This resulted in 81 management 

prescriptions for each stand and 9.720 decision variables. The mathematical formulation was devised based on 

Model I to maintain the physical identity of the management units along the planning horizon (Johnson and 

Scheurman, 1977). The objective was to maximize the net present value while considering the minimum and 

maximum annual demands of 140,000 and 160,000 m³, respectively.  

The discount rate used was 8% per year, the sale price of the wood was R$ 80.00/m³, and the cost of 

harvesting was R$ 30.00/m³. The forestry costs varied based on the stand forest age, and they were obtained from 

Araújo Júnior et al. (2017), i.e., R$ 4,059.05, R$ 1,627.81, R$ 757.95, and R$ 88.12 per hectare in the first, second, 

third, and fourth years of plantation development, respectively. 

Linear Programming and Integer Linear Programming 

The mathematical LP and ILP models were based on the study by Rodrigues et al. (2004). The only 

difference between the models is the absence of restrictions 2 and 5 for the LP. 

Max VPLG = ∑ ∑ CijXij

N

j=1

M

i=1

 (1) 

Subject to 

∑ Xij

N

j=1

=1 ∀ i ∈ {1,…, M} (2) 

∑ ∑ VijkXij

N

j=1

M

i=1

≥ Dmínk ∀ 𝑘 ∈  {1, 2, … , 15, 16} (3) 

∑ ∑ Vij(k)Xij

N

j=1

M

i=1

≤ Dmáxk ∀ 𝑘 ∈  {1,2, … ,15,16} (4) 

Xij∈ {0,1} (5) 

where VPLG is the overall net present value for the entire forest, in reais; Cij is the net present value (NPV) for 

the i-field when the prescription j is marked, in reais; Xij is the decision variable of the model, represented by the 
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proportion of the area of the stand i that will receive the alternative management j; M is the total number of stands; 

N is the total number of management alternatives; Vij(k) is the total volume of wood (m3) of stand i under 

prescription j in period k of the planning horizon; Dmínk and Dmaxk are the minimum and maximum wood 

demand values in the k period of the planning horizon, respectively. 

Constraint (2) ensures that the entire area of each management unit receives a unique prescription. 

Restrictions (3) and (4) limit the annual harvest volume between the minimum and maximum demand values. 

Finally, constraint (5), considered only for the ILP model, ensures that the decision variable is of the binary type. 

Additionally, the metaheuristics accounted for the restrictions imposed on the LP and ILP models. In 

these cases, the objective function was penalized because of the non-observation of any of the constraints. Hence, 

the fitness function increased by R$ 100.00 for each cubic meter, which caused excess or inadequate wood in a 

specified period of the planning horizon. This method is the same as that adopted by Rodrigues et al. (2004). 

The decision variable values obtained using the simplex algorithm were rounded to the nearest integer (0 

or 1). The new solution created, herein referred to as rounded linear programming (RLP), was included as an initial 

solution for the processing of metaheuristics. Furthermore, the processing was performed without including RLPs 

to evaluate whether the results obtained were different. The “branch and bound” algorithm was used to obtain the 

solution of the ILP model. 

Clonal Selection Algorithm 

The CSA is based on the natural process of clonal selection of antibodies, in which only cells that 

recognize a specified antigen proliferate (Castro and von Zuben (2002); Wang et al. (2016)). During optimization, 

only the best solutions of the current generation are considered in the search process evolution to obtain better 

values. Araújo Júnior et al. (2017) demonstrated its use in a forest planning problem. Other relevant studies include 

those of Boussaid et al. (2013) and Qiu and Lau (2014). 

The values considered for hypermutation, cloning, selection, and substitution rates were 0.20, 0.50, 0.80, 

and 0.20, respectively. The initial population comprised 80 individuals, and processing was interrupted after 100 

generations. These values were defined as described by Araújo et al. (2017). 

Genetic Algorithm 

Metaheuristic GA is considered efficient for the exploration of various parts of a region comprising viable 

solutions, where it evolves gradually toward the best solution. It is inspired by the process of natural selection 

described by Charles Darwin and the study of genetics initiated by Gregor Mendel. The general concept is that the 

best individuals, i.e., the most adapted ones, tend to survive and propagate their genes through crosses. Eventually, 

mutation occurs during the formation of a new individual. 

In the current study, the GA configuration used accounted for an initial population of 50 individuals and 

the selection of parents via the tournament method at a rate of 0.80; for the crossover with one breakpoint, a gene-

to-gene mutation rate of 0.01 with elitism was applied, and the final solution was obtained after 100 generations. 

These values were obtained from the study of Matos et al. (2019). 

Simulated Annealing (SA) 

Metaheuristic SA is analogous to physical annealing. It involves initially blowing a metal or glass at high 

temperatures and then slowly cooling the substance until it reaches a low-energy state and exhibits the desired 

physical properties. The energy levels of the atoms fluctuate with a tendency to decrease during the process. An 

increase or decrease in energy level occurs based on a probability function. 

The current energy level corresponds to the objective function value for a viable solution in an 

optimization problem. The objective of achieving a stable state in the substance using minimal energy is to obtain 

a viable solution for the problem using the best possible value of the objective function. 

For the SA algorithm, we considered an initial temperature of 108, a final temperature of 10-5, an 

acceptance probability of lower solutions of 0.05, and 80 neighbors. More details regarding the SA are available 

in the study by Ferreira et al. (2018). 

Variable Neighborhood Search (VNS) 

The VNS algorithm is based on a local search with different neighborhood structures (Doerner et al., 

2007). These structures define a set of modifications that can be applied to generate new solutions (Meignan et al., 

2012).  

The proposed version of the VNS considers four structures to modify the neighborhood of the current 

solution. This implies that the prescriptions of a certain percentage of stands are randomly modified (Araújo et al., 

2018) for each neighborhood structure, i.e., structures 1, 2, 3, and 4 allow changes in 1%, 2%, 3%, and 4% of 

stands, respectively. In this study, the structures were considered in an orderly manner during each iteration. The 

best solution obtained after the evaluation of the fourth structure was maintained. 
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The algorithm evaluated all individuals in a neighborhood of size equivalent to 100 individuals in each 

local search procedure. The evaluation was terminated after 100 generations. 

Evaluation 

The best solution for each repetition was analyzed per metaheuristic. The minimum, maximum, and 

average values, as well as the standard deviation of the fitness function were obtained. The efficiency (Ef) of each 

algorithm was calculated based on the equation by Rodrigues et al. (2004) as follows: 

𝐸𝑓 =
𝑓𝑀

𝑓0
𝑥100 (10) 

where fM is the value of the best solution obtained by metaheuristics (R$), and f0 is the value of the best solution 

generated by the branch-and-bound algorithm (R$). 

Boxplot graphs were constructed to compare the results of each metaheuristic with and without RLP. The 

Kruskal–Wallis (K–W) test was performed to test the hypothesis of equality between processing. The evolution of 

the maximum, average, and minimum solutions of each algorithm in each generation was evaluated. 

Processing 

LP and ILP models were solved using the CPLEX software (version 12.7.1; IBM Corporation, 2017) 

using the simplex and branch-and-bound algorithms. For the metaheuristics, the Metaheuristics for Forest Planning 

software, developed at the Laboratory of Operational Research and Forest Modeling of the Federal University of 

Minas Gerais, was used. All algorithms were executed on a 64-bit Windows 10 operating system computer with a 

2.0 GHz Intel Core i7 processor and 8 GB of RAM. 

RESULTS 

The solution obtained using the LP model presented a global NPV of R$ 32,191,790. However, this 

solution did not contain any stands with a single management prescription. Therefore, the rounding of the solution 

caused did not satisfy the wood demand in five periods of the planning horizon, which totaled 15,608 m³ of wood. 

The net present value considering the penalty due to the non-attendance of the volumetric restriction was R$ 

24,312,036. 

The results obtained with the introduction of the optimal solution of LP with subsequent rounding were 

superior to those obtained without such consideration (Table 1), except when the SA algorithm was used. The 

solutions were similar to those of SA.  

In terms of the maximum fitness in each algorithm, the greatest difference in percentage between using 

and not using RLP was presented by metaheuristic GA (4.60%). For the mean value of 25 repetitions, the greatest 

difference was presented by the CSA (3.93%). For the lowest fitness value, the greatest difference was observed 

in the CSA (2.05%). Such differences were reflected in the maximum, average, and minimum efficiencies of each 

algorithm. The efficiencies were calculated based on the value of R$ 32,170,883 for the best solution, which was 

obtained using the branch-and-bound algorithm. However, such a value is not an optimal solution to this problem. 

  

Table 1. Descriptive statistics and efficiency of processing results obtained using genetic algorithm (GA), clonal 

selection algorithm (CSA), simulated annealing (SA), and variable neighborhood search (VNS) with or 

without RLP. 

Tabela 1. Estatística descritiva e eficiência para os resultados dos processamentos das metaheurísticas genetic 

algorithm (GA), clonal selection (CSA), simulated annealing (SA) e variable neighborhood search 

(VNS) com e sem a inclusão da PLA. 

Algorithm RPL 

Maximum 

Fitness 

(R$) 

Average 

Fitness 

(R$) 

Minimum 

Fitness 

(R$) 

Deviation 

(R$) 

Maximum 

Efficiency 

(%) 

Average 

Efficiency 

(%) 

Minimum 

Efficiency 

(%) 

GA Yes 31.976.681 31.007.025 29.975.634 655.148 99,40 96,38 93,18 

GA No 30.548.456 30.383.579 30.138.942 94.669 94,96 94,44 93,68 

CSA Yes 31.974.995 31.785.993 30.898.924 205.513 99,39 98,80 96,05 

CSA No 30.863.842 30.584.526 30.279.608 150.093 95,94 95,07 94,12 

SA Yes 30.794.503 30.525.803 30.262.449 115.495 95,72 94,89 94,07 

SA No 30.718.933 30.482.322 30.130.594 157.712 95,49 94,75 93,66 

VNS Yes 32.014.953 31.808.302 31.119.515 224.062 99,52 98,87 96,73 

VNS No 31.144.907 30.880.498 30.669.664 101.268 96,81 95,99 95,33 
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The inclusion of a relatively good initial solution benefits the processing (Figure 1). For the CSA, all 25 

repetitions with RLP inclusion were superior to the solutions obtained for processing without inclusion. For the 

VNS algorithm, only one repetition without the inclusion of the RLP was higher than the worst repetition with 

inclusion. For the GA, a metaheuristic that presented greater variability among the repetitions with the inclusion 

of RLP, the best solution without inclusion was superior to only eight replicates with inclusion. For SA, solutions 

with and without inclusions alternated, with no emphasis on one or the other methodology. 

 

GA CSA 

  
SA VNS 

  

Figure 1. Boxplot for values of fitness obtained using genetic algorithm (AG), clonal selection algorithm (CSA), 

simulated annealing (SA), and variable neighborhood search (VNS) with (1) and without (2) RLP. 

Figura 1. Boxplot para os valores de fitness obtidos pelos algoritmos genetic algorithm (AG), clonal selection 

algorithm (CSA), simulated annealing (SA) e variable neighborhood search (VNS) considerando a 

presença (1) e ausência (0) da PLA. 

The K–W test indicated differences (p < 0.05) between the use and non-use of RLP for the AG, CSA, and 

VNS algorithms (Table 2). 
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Table 2. Results for Kruskal–Wallis test comparing algorithms with and without RLP  

Tabela 2. Resultados para o teste de Kruskal-Wallis comparando os algoritmos com e sem PLA 

Algorithm RLP rank Average (R$) Median (R$)  

VNS Yes 175.20 31,808,302 31,874,666 a 

CSA Yes 168.48 31,785,993 31,818,832 a 

VNS No 123.60 30,880,498 30,863,251 b 

GA Yes 106.68 31,007,025 30,899,130 b 

CSA No 076.32 30,584,526 30,601,936 c 

SA Yes 064.92 30,532,747 30,518,980 cd 

SA No 056.12 30,473,787 30,500,630 d 

GA No 032.68 30,383,579 30,383,886 e 

* Averages with the same letter denote no significant different (p > 0.05) based on K–W test 

 

Considering the evolution of the fitness values for each algorithm (Figure 3), the inclusion of RLP 

improved the initial behavior of the AG, SA, and VNS algorithms; however, after some iterations, the solutions 

evolved to those obtained without the inclusion of RLP. To achieve maximum fitness values based on less than 20 

iterations (or generations), differentiation occurred throughout processing, causing the algorithms that considered 

RLP to yield better final solutions. Metaheuristic SA with the inclusion or absence of RLP demonstrated identical 

behaviors. 
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S
 

   
Figure 2. Evolution of maximum, average, and minimum fitness for each algorithm, with presence (continuous 

line) and absence (dotted line) of RLP. 

Figura 2. Evolução do fitness máximo, médio e mínimo considerando cada algoritmo avaliado e a presença (linha 

continua) ou ausência (linha tracejada) da PLA. 

DISCUSSION 

The application of LP to a problem that can be strictly regarded as typical of ILP does not generate integer 

values for all decision variables. This implies that not all stands have only one prescription, i.e., certain sites should 

be partitioned such that more than one management alternative is implemented. This implication is extremely 

inconvenient when one wishes to manage a forest, since the stand is assumed as the smallest management unit. 

Partitioning a stand causes serious operational and management problems, such as difficulty in limiting the 

harvesting area and in applying specific forestry tracts, as well as difficulty in mapping forest inventory attributes 

to each substand. 

Hence, ILP or one of its variations, such as binary programming, rather than LP, may be considered. This 

is because the problem pertains to whether the harvest of a particular stand should be defined within 1 h of the 

planning horizon. 

Nonetheless, ILP presents some difficulty when the problem belongs to the NP class. For the problem 

investigated, the optimal solution of ILP was not achieved even within 1 h of processing using the branch-and-

bound algorithm. The best solution obtained presented viability, i.e., it fulfilled all the restrictions imposed by the 

formulated ILP model. 

When rounding the optimal solution provided by LP, an unfeasible solution is obtained, i.e., a deteriorated 

or degenerated solution. This occurs when at least one of the restrictions imposed on the solutions is not fulfilled, 

as in the case of non-compliance with wood demand in a specified period of the planning horizon. This is consistent 

to the discussion by Silva et al. (2003), thereby reinforcing the fact that rounding the optimal solution of LP can 

generate non-viable solutions to a forest production planning problem. 

Although some authors perceived that the solutions obtained thus far are mediocre initial solutions for 

metaheuristics, the solution derived from the rounding of the solution via LP is still the best possible solution to 

the problem. Other methods for generating initial viable solutions can be applied, as discussed by Gaspar–Cunha 

et al. (2013); however, they are not applicable to this study.It is noteworthy that the inclusion of such a solution in 

the initial set of metaheuristic solutions significantly facilitated the identification of new viable solutions that were 

better than the initial ones. For the AG, CSA, and VNS, the best solutions were obtained without the inclusion of 

RLP, thereby justifying their use. The highest gain was yielded by metaheuristic GA. Meanwhile, the SA presented 

no contribution, and this was related exclusively to the algorithm used. 

The SA considers the possibility of selecting a lower solution over an extremely good initial solution. 

This is due to the probability of acceptance of lower solutions, which is high at the beginning of processing and 

decreases gradually with the system temperature. Hence, such a result was anticipated, and it was assumed that 

the routines implemented in each algorithm were intrinsically associated with the problems being solved, i.e., for 

each class of problems, an algorithm exists that can yield a good solution in a relatively short time. 

CONCLUSIONS 

• The use of a solution derived from the rounding of a solution generated via an LP algorithm to solve the 

problem of forest production planning contributes significantly to the improvement in the results of the 

GA, CSA, and VNS. 

• Using an extremely good initial solution did not affect the results obtained by metaheuristic SA. 
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• Rounding the solution to the relaxed problem is a good alternative for generating an initial solution for 

metaheuristics.  
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