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Resumo 

Estimando o teor de umidade do material combustível fino e morto em condições de clima equatorial . A 
determinação do teor de umidade do material morto e fino (TUMMF) é importante para ações de prevenção e 

combate aos incêndios florestais, já que possui grande influência na ignição e no comportamento do fogo. O 

Fine Fuel Moisture Code (FFMC) do Fire Weather Index (FWI), consiste em um dos modelos mais utilizado 

no mundo para estimar o TUMMF. No entanto, trabalhos que avaliem a eficiência desse modelo no Brasil ou 
em regiões de baixa latitude são raros. O presente estudo teve por objetivo avaliar a eficiência do FFMC em 

uma área de clima equatorial e desenvolver um novo modelo capaz de estimar o TUMMF com maior precisão. 

Para tal, 861 amostragens aleatórias do TUMMF foram determinadas através da secagem em estufa. Os valores 

obtidos foram comparados com os estimados pelo FFMC e correlacionados com parâmetros meteorológicos 
para se construir um modelo de regressão. Os resultados obtidos apontam que o TUMMF foi superestimado 

pelo FFMC. As variáveis independentes com maior influência no TUMMF foram, em ordem decrescente de 

significância: umidade relativa do ar, temperatura do ar, quantidade de precipitação pluviométrica nas últimas 

24 horas e número de dias sem chuva. O modelo desenvolvido apresentou bons parâmetros estatísticos (r2=0.86; 
p < 0.0001; RMSE = 0.22) e pode ser utilizado, em locais similares às áreas avaliadas neste estudo, para se 

estimar o risco diário de ocorrência de incêndios e para determinar as condições ideais para queimadas 

prescritas. 

Palavras-chave: risco de fogo, climatologia dos incêndios, modelagem da umidade.   

Abstract 

The measurement of the fine dead fuel moisture content (FDFMC) is extremely important for forest fire 

prevention and suppression activities, as it has a great influence on the ignition probability and fire behavior. 

The Fine Fuel Moisture Code (FFMC) from the Fire Weather Index (FWI), is one of the most used models to 
estimate the FDFMC. Nevertheless, studies that assess the efficiency of this model in Brazil or in low latitude 

regions are rare. The present study aimed to evaluate the efficiency of the FFMC in an equatorial climate area 

and to develop a new model capable of estimating the FDFMC with greater precision. For this purpose, 861 

random samples of fine dead fuel had their moisture content determined through oven drying. The obtained 
values were compared with those estimated by the FFMC and correlated with meteorological parameters to 

build a regression model. The results obtained show that the FDFMC was overestimated by the FFMC. The 

independent variables with the greatest influence on the FDFMC were, in decreasing order of significance: air 

relative humidity, air temperature, amount of rainfall in the last 24 hours and number of days without rainfall. 
The developed model presented good statistical parameters (r2 = 0.86; p <0.0001; RMSE = 0.22) and can be 

used, in areas with similar characteristics of the study area, to estimate the daily fire risk and to determine ideal 

conditions for prescribed burns.  

Keywords: fire risk, fire weather, fuel moisture modelling.  

 

INTRODUCTION 

The fuel moisture content (FMC) represents the amount of water present in the plant biomass expressed 

as a percentage of its dry fuel weight. The higher the FMC, the greater the difficulty for the fuel to burn, since a 

high amount of energy will be necessary to evaporate all the water and then initiate the combustion process 

(NELSON, 1984; MATTHEWS, 2014; WHITE, 2018).  

While the moisture content of live fuels depends mainly on the physiological characteristics of the plants, 

the moisture content of dead fuels is affected by their size and by local atmospheric conditions, such as air 

temperature, relative air humidity, wind speed, solar radiation and rainfall (MATTHEWS, 2014). In the absence 

of rainfall, the dead FMC will depend only on the exchange of water vapor between the fuel and the environment 

(adsorption and desorption). In a situation when the air temperature and humidity remain constant, the dead fuel 

tends to reach the equilibrium moisture content, where there is no net exchange of moisture between environment 

and fuel (NELSON, 1984). According to the same author, this condition can only be achieved in experiments 

carried out in a laboratory under controlled climate conditions, since in nature, the temperature and the air relative 

humidity vary continuously throughout the day.  
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The fine dead fuel is represented by the one hour timelag fuel class (timelag refer to the amount of time 

it takes a dead fuel particle to reach about 63% of the difference between its current moisture content and the 

equilibrium moisture content). This includes dead needles, leaves, herbaceous plants and fine stems generally 

found in the litter layer with diameter less than 1/4" (0.64 cm). The moisture content of these fuels can change 

rapidly with rainfall or other changes in atmospheric conditions. Fuel with a larger diameter (10-h, 100-h and 

1000-h timelag fuels), on the other hand, generally respond more slowly to changes in environmental conditions. 

The greater the fuel diameter the slower the moisture content will change (MATTHEWS, 2014). 

The moisture content of the dead fine fuel load (1-h timelag) is recognized as a key parameter that 

influences the fire ignition and behavior (GISBORNE, 1928; WHITE, 2018). The real-time knowledge of the fine 

dead fuel moisture content (FDFMC) is essential to determine how the fire will behave: rate of spread, flame 

length, fire line intensity and other characteristics, since wildfires usually begin and propagate in the fine dead fuel 

load that composes the forest litter (WHITE, 2018). Gisborne (1928) initially proposed that the inflammability of 

the forest duff is directly related to the moisture content of the fine dead fuels that form the forest floor (Table 1). 

Since then, the fine fuel moisture content has been used to assess wildfire risk. Therefore, efficient preventive 

actions, such as prescribed burns and firefighting activities will more likely be successful if the FDFMC is known. 

Table  1.  Inflammability of the forest duff according its moisture content. 

Tabela 1.  Inflamabilidade da liteira florestal de acordo com seu teor de umidade 

Moisture content (%) Inflammability 

More than 25 None 

19 to 25  Very low 

14 to 18  Low (camp fires become dangerous) 

11 to 13 Medium (matches become dangerous) 

8 to 10 High (matches always dangerous) 

2 to 7 Extreme (all sources of ignition dangerous) 

*Fonte: Gisborne (1928). 

*Font: Gisborne (1928). 

 

Despite the relationship between weather and dead fuel moisture content has been studied for over a 

century, reliable methods to predict the variation of the FMC have not yet been developed (WHITE, 2018). Various 

approaches and models were developed over the years, however, they usually have restricted application, being 

unable to predict with efficiency in situations where the climate and the vegetation characteristics are different 

from the environments where they were developed (WHITE, 2018). Among several existing models currently in 

use to estimate the FDFMC and, consequently, the wildfire risk, the Canadian Forest Weather Index (FWI) (VAN 

WAGNER, 1974) stands out, since it is the most used on the planet (BIANCHI; DEFOSSE, 2014; WHITE, 2018). 

The Fine Fuel Moisture Code (FFMC) is a component of the FWI and is calculated based on meteorological 

parameters (air temperature and relative humidity, wind speed and rainfall) measured at noon (VAN WAGNER, 

1974). According to White (2018) the calculation of the FFMC is complex and based on 13 different equations, 

which may complicate its applicability.    

This study has the objective to assess the efficiency of the FWI - FFMC in determining the FDFMC and, 

based on the obtained results, to develop new models capable of better predicting the FDFMC at the study area.   

MATERIAL AND METHODS 

All the procedures necessary for the development of this study were carried out in the municipality of 

Itabaiana (10°41’06”S e 37°25’30”O), located in the state of Sergipe, Northeast region of Brazil. The climate, 

according to the updated classification of Köppen and Geiger, is Equatorial savannah with dry summer (As) 

(KOTTEK et al. 2006), with an average annual rainfall of 782 mm. November is the driest month with an average 

of 38 mm of rainfall and June is the month with the highest average rainfall (98 mm). The average temperatures 

vary during the year by 4.1 ºC, with an average annual of 24.4 ºC (CLIMATE-DATA, 2021).   
The fine dead fuel load was collected in open areas. Some of them dominated by grasses (Poaceae) and 

others with spaced tree vegetation. No samples were collected of closed canopy forest litter. Therefore, the fuel 

load was composed mainly from cured grasses and dead leaves. In the area where the fuel was collected, a DAVIS 

Vantage Vue weather station (K6250 model) was installed at 1.8 meters high and programed to measure the 

meteorological variables every 10 minutes. 

Initially, the fine fuel load was collected from each random 0,0625 m2 parcel. The fuel was then packed 

in paper bags and immediately had their fresh mass determined with a scale with precision of 0.1 g. In total, 861 
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samples were weighed, each had a wet fuel load between 50 and 100 g. The sampling procedure was done over 

two year period on random days and different day and night hours. After the fuel samples had their fresh mass 

determined, they were taken to a laboratory and dried in an oven at 100ºC until they reached constant weight 

(approximately 24h) then had their dry mass and moisture content determined. The fuel moisture content was 

correlated with meteorological parameters measured by the weather station at the time when the fuel samples were 

collected. The meteorological parameters measured in this study were: air temperature, air relative humidity, wind 

speed, rainfall in the last 24 hours and days since the last rainfall. The nominal dependent variable (fine dead fuel 

moisture content) was modeled using the forward stepwise procedure to select which of the weather parameters 

better explained its variation. 

The FDFMC estimated by the FWI - FFMC was determined for each sample using the FWI Calculator 

version 10.4.1.107. It was necessary to convert the FFMC into the FDFMC using the following equation (Equation 

1). 

 

𝐹𝐷𝐹𝑀𝐶 = 101 − 𝐹𝐹𝑀𝐶                            (Equation 1) 

Where: FDFMC = fine dead fuel moisture content; FFMC = Fine fuel moisture code from the FWI index. 

 

The efficiency of the FWI - FFMC was evaluated through the analysis of variance (ANOVA) between 

real and estimated values. The efficiency of the regression models developed in this study were assessed through 

the coefficient of determination (r2), the p-value coefficient and the root mean square error (RMSE). All statistical 

analysis were performed using the software JMP version 7.0. The significance level was set at α = 0.05%. 

RESULTS 

 Based on the analysis of the 861 samples, the real FDFMC ranged from 1.8% to 75.2% with a mean value 

of 17.5%. The FDFMC estimated by the FWI - FFMC ranged from 6,6% to 96,1%, presenting a mean value of 

25,5%. The variation of the real and estimated FDFMC and of the meteorological parameters registered during the 

sampling procedures are shown below (Table 2).  

Table 2.  List of minimum, maximum and mean values of all variables used in this study.  

Tabela 2. Lista dos valores médios, mínimos e máximos de todas as variáveis utilizadas neste estudo. 

The FWI - FFMC overestimated the real FDFMC in most cases. Its average value was 8% higher than 

the measured FDFMC. According ANOVA test, the estimated values was statistically different from the real (F = 

102.53; p < 0.001).  Since both variables presented a significant correlation (r = 0.79; p < 0.001), it was possible 

to build an adjustment model (Equation 2) using linear regression (r2 = 0.63; p < 0.001; RMSE = 7.85) (Figure 1).  

 

𝐹𝐷𝐹𝑀𝐶𝑟𝑒𝑎𝑙 = 2.67 + 0.57 ∗ 𝐹𝐷𝐹𝑀𝐶𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑            (Equation 2) 

Where: FDFMCreal – Measured fine dead fuel moisture content; FDFMCestimatade – Estimated fine dead fuel 

moisture content using the FWI – FFMC. 

 

Parameter Minimum Maximum Mean 
Standard 

Deviation 

Real FDFMC (%) 1.8 75.2 17.5 13.1 

Estimated FDFMC (FWI - FFMC) (%) 6,6 96,1 25,5 17.9 

Air Temperature (ºC) 20.3  38.7  27.5  3.2 

Air Humidity (%) 25.8 99 71.4 13.3 

Rainfall in the last 24 hours (mm) 0 75 2.3 8.1 

Wind Speed (km h-1) 0 24.5 2.8 5.2 

Days without rainfall (day) 0 33 4 6.3 
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Figure 1.  FDFMC observed (actual) versus predicted by using the FWI - FFMC (plot on the left side). On the 

right, plot of residuals versus predicted response. 

Figura 1. TUMMF observado (actual) versus previsto (predicted) utilizando o FFMC do FWI (gráfico à esquerda). 

Na direita, gráfico da distribuição dos resíduos.  

 

Seeking to better predict the FDFMC at the study site, a new multivariate regression model was created. 

Using the forward stepwise procedure, air relative humidity was the most significant variable responsible for the 

variation of the FDFMC (p < 0.001), followed by the rainfall amount in the last 24 hours (p < 0.001) and by the 

number of days without rainfall (p < 0.001). The inclusion of the variables air temperature (p = 0.09) and 

windspeed (p = 0.12) did not result in a significant improvement of the model efficiency, therefore, both were 

disregarded. The best fitted model was obtained through nonlinear regression (r2 = 0.76; p < 0.001; RMSE = 6.8) 

(Equation 3). The proposed model presented a better coefficient of determination and lower error than the FWI - 

FFMC adjustment model (Figure 2). As the data used to create the proposed model was measured during the 24 

hours of the day, the model can be used at any time. 

 

𝐹𝐷𝐹𝑀𝐶 = 𝑒1.54319+0.00022∗𝐻
2+0.13659∗√𝑅24ℎ−0.13032∗𝑁𝐷𝑊𝑅             (Equation 3) 

Where: FDFMC – Fine dead fuel moisture content (%); e - Base of the natural logarithm = 2.71828; H – Air 

relative humidity (%); R24h – Rainfall amount in the last 24 hours (mm); NDWR – Number of days without rainfall.  

 

 
Figure 2.  FDFMC observed (actual) versus predicted using the proposed model (on the left side). On the right, 

plot of residuals versus predicted response. 

Figura 2. TUMMF observado (actual) versus previsto (predicted) utilizando o modelo proposto (gráfico à 

esquerda). Na direita, gráfico da distribuição dos resíduos.  
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DISCUSSION 

 The FWI is a set of mathematical equations that is used as a fire danger rating system based on dozens of 

experimental works, conducted between 1928 and 1970, in Canadian natural pine forests (VAN WAGNER, 1974). 

It is the most tested and used model in the world and usually presents good results. The FWI had its efficiency 

proven in different countries, such as Argentina (BIANCHI; DEFOSSE, 2014); Australia (DOWDY et al., 2010); 

China (LI et al., 2014; ZHANG et al., 2014); Canada (WADDINGTON et al., 2011); Portugal (FERNANDES et 

al., 2010); Spain (GABBAN et al., 2008); Greece (KARALI et al., 2013); Germany (HOLSTEN et al. 2013); 

United States (ROADS et al., 2010).   

However, publications that report inaccuracy of the FWI index are also common. In a study in Slovenia, 

for example, Sturm et al. (2012) concluded that the results obtained with the original FWI were not satisfactory; 

Simpson et al. (2014) found that a FWI hazard class calibration was required in New Zealand for the effective use 

of the model. Jong et al. (2016) concluded that a calibration of the FWI was necessary in order to avoid large errors 

with respect to the identification of periods of significantly elevated fire danger in the United Kingdom. 

Dimitrakopoulos et al. (2011) proposed a new classification of the FWI because the existing fire danger classes 

were found unsuitable for the dry and extremely fire prone eastern Mediterranean climate.  

In two Brazilian studies using average daily data (TORRES et al., 2017; TORRES; LIMA, 2019), it was 

concluded that the FWI was not efficient in predicting forest fires in the areas where the experiments were carried 

out.   

 The results found in this work showed that the FWI – FFMC overestimated the real FDFMC by 

approximately 8%. However, both variables presented a high and significant correlation, which provided the 

design of an adjustment model. The differences between actual and estimated values can be justified by differences 

in vegetation and climate aspects. The areas where the experiments to develop the FWI were done present 

temperate climate with predominance of pine forests. The areas used in this study present equatorial climate with 

vegetation ranging from tropical forests to open areas dominated by grasses. This conclusion is based on the fact 

that the physical process of fuel moisture absorption or desorption depend on fuel characteristics such as surface 

area to volume ratio and weather conditions (NELSON, 1984). Also, empirical models such as the FWI that are 

built based on experimental observations, generally have their use restricted to areas with similar characteristics 

from where the experiments were conducted (WHITE, 2018). It is always recommended to evaluate the efficiency 

of fire risk or fire behavior models before using them operationally in a certain region, especially if the climate 

and vegetation characteristics are different from which the models were developed (WHITE et al., 2016).  

 Despite the existence of dozens of mathematical models built to estimate the fuel moisture content of 

dead fuels (MATTHEWS, 2014), only one model was found in the literature that was developed using empirical 

data of FMC measured in a Brazilian equatorial climate region (RAY et al., 2010). Nevertheless, the model in 

question was built to estimate the FMC of the Amazon rainforest litter. In addition to using the number of days 

without rainfall, the air temperature and relative humidity (in the form of the vapor pressure deficit), the respective 

model uses the foliar area index of the forest as an input variable. Therefore, its use for areas without tree cover is 

impractical.  

The new model has as input three variables (air humidity, rainfall amount and days without rainfall) that 

have already been proved to have a substantial effect on the fine dead fuel moisture content (VAN WAGNER, 

1974; RAY et al., 2010; WHITE et al., 2016). Despite several authors consider that the processes involving rainfall 

are too complex for modelling the FMC (MATTHEWS et al., 2010), the new model presented good statistical 

parameters. It differs from other models that are commonly used to determine the fire danger and/or the FMC, for 

being capable to be utilized at any hour of the day and for its simplicity. Any person that has access to a weather 

station with a pluviometer and a hygrometer can use the model.   

CONCLUSION 

• Comparing the measured data of the fine dead fuel moisture content with the value predicted by the FWI - 

Fine Fuel Moisture Code (FFMC), it was observed a significant statistical difference between both. The FFMC 

average value was 8% higher than the measured mean fuel moisture content. Therefore, due the possibility of 

the FFMC underestimate the fire risk, its use is not recommended for the study area.  

• Air relative humidity was the most significant variable responsible for the variation of the FDFMC, followed 

by the rainfall amount in the last 24 hours and by the number of days without rainfall. 

• The proposed model presented better statistical parameters and has the advantage of using easily measured 

meteorological variables that can be determined at any hour of the day.  

• New studies should be done in different equatorial climate regions to evaluate the efficiency of the proposed 

model. If its efficiency is proven, the model can be used as a fire risk index, since the FDFMC is directly 
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related to the fuel ignition and fire behavior. Also, it can be used as a tool for determining the ideal conditions 

to perform prescribed/control burns.     
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