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Resumo 

k-vizinhos mais próximos e regressão linear na predição do fator de forma artificial. A proposta deste estudo 

foi testar se a abordagem não-paramétrica, conhecida como k-Nearest-Neighbor (k-NN), poderia melhorar as 

estimativas do fator de forma artificial (f1,3) individual de árvores do híbrido Eucalyptus urophylla x Eucalyptus 

grandis, em comparação ao método de Mínimos Quadrados Ordinário. Foram selecionadas e derrubadas 149 

árvores-amostras e medidos ao longo do fuste os diâmetros a 10% (d0,1), 30% (d0,3), 50% (d0,5) e 70% (d0,7) da 

altura do fuste comercial e, posteriormente, a cada 2m. Modelos matemáticos reconhecidos na literatura para 

predição do fator de forma foram ajustados para comparação. O hiperparâmetro k de ajuste ótimo para o 

estimador k-NN foi obtido através de repetidas validações cruzadas. Os dados de treinamento do modelo de 

regressão k-NN foram idênticos aos utilizados no ajuste dos modelos de regressão linear. A maior parte dos 

modelos de regressão linear múltipla apresentou problemas de colinearidade ou multicolinearidade. O uso da 

covariável (𝑑0.3. 𝑑0.7)/𝑑1.3
2  e k = 15 possibilitou a construção de modelos k-NN com melhor capacidade de 

generalização. O potencial do estimador k-NN para predizer o fator de forma artificial e, por conseguinte, obter 

estimativas menos viesadas dos volumes individuais de árvores foi admitido e, considerado superior ao uso da 

regressão linear e fatores de forma médios. A abordagem k-NN pode ser considerada mais genérica para 

predizer o fator de forma de árvores, e seu uso pode ser aconselhado quando modelos de regressão linear 

clássicos, ou outros métodos mais simples, não mostrarem bons resultados. 

Palavras-chave: Eucalyptus, aprendizado de máquina, vizinho mais próximo, regressão linear, fator de forma 

0,7 
 

Abstract 

The proposal of this study was to test whether the performance of the nonparametric approach k-Nearest 

Neighbor (k-NN), would improve estimates of individual artificial form factor (f1.3) of trees of the hybrid 

Eucalyptus urophylla x Eucalyptus grandis compared to the Ordinary Least Squares method. A total of 149 

sample-trees were selected, felled, and diameter was measured along the trunk at 10% (d0.1), 30% (d0.3), 50% 

(d0.5) and 70% (d0.7) of commercial height and posteriorly at 2m intervals. Mathematical models recognized in 

the literature for predicting the form factor were adjusted for comparison. The hyperparameter k of optimum 

adjustment for the k-NN estimator was obtained by repeated cross-validation. The training data of the k-NN 

regression model were identical to those used in the adjustment of the linear regression models since most 

multiple linear regression models present problems of collinearity or multicollinearity. The use of the covariate 

(𝑑0.3. 𝑑0.7)/𝑑1.3
2  and k = 15 made it possible to construct k-NN models with better generalization capacity. The 

potential of the k-NN estimator to predict the artificial form factor and thus to obtain less biased estimates of 

individual tree volumes was demonstrated and considered to be superior to the use of linear regression and 

average form factors. The k-NN approach can be considered more generic for prediction of the tree form factor, 

and its use is recommended when classical linear regression models or other simpler methods do not yield 

good results. 

Keywords: Eucalyptus, machine learning, nearest neighbor, linear regression, form factor 0.7 

_______________________________________________________________________________________ 

 

INTRODUCTION 

 

In 2016, the total area of planted trees in Brazil increased by 0.5% in relation to the year 2015, totaling 

7.84 million hectares (ha). The genus Eucalyptus occupies 5.7 million hectares of planted trees with a 2.4% annual 

growth rate during the last five years. In this period, the state of Mato Grosso do Sul had the largest expansion of 

Eucalyptus culture registering an increase of 400,000 ha, with an average annual growth rate of 1.3%. Among the 

Brazilian states, the state of Pará was 10th in terms of area of planted Eucalyptus in 2016, covering 133,996 ha 

(IBÁ, 2017). 

The accurate estimation of wood volume is among the most important pieces of information about a forest 

plantation, which among other factors is essential for proper forest management. The use of volume equations, 
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taper functions and the average form factor of the plantation stand are the most common ways of quantifying forest 

production (DRESCHER et al., 2001, PACHECO et al., 2017). The form factor is used to reduce the error caused 

by the action of equalizing the volume of the tree to the volume of a perfect cylinder. Therefore, the volume can 

be estimated by the equation: vi = g.h.f, where vi = volume of the i-th tree (m³), g = sectional area at 1.30m from 

the ground (m²), h = tree height (m), and f = tree form factor (ADEKUNLE et al., 2013). 

The form factor expresses the ratio of diameter and height to the volume of a tree (EASTAUGH, 2014). 

However, obtaining the volume through the basic characteristics of the individual stems, such as diameter and 

height, is widely recommended as a function of practicality, but this has potential to cause errors that result from 

variation in the shape of the trunk of the trees. (SOCHA; KULEJ, 2007). 

Another important aspect of management of forest plantations is the generic use of the form factor. In the 

state of Pará, for example, the prediction of the volume of standing wood in planted stands has traditionally been 

conducted using the form factor 0.7, disregarding variation due to species, age, silvicultural characteristics, and 

other factors that affect the shape of the trunk. This 0.7 factor was developed by the FAO mission for native forest 

species, based on forest surveys carried out in Amazonia between 1956-1961. Therefore, the generic use of the 

form factor 0.7 for different species may imply biased estimates of the actual volumes. 

Parametric approaches such as linear regression have been the main focus of many modeling studies of 

the form factor of trees in forests of unequal ages and of the same age (e.g., DRESCHER et al., 2001; DRESCHER 

et al., 2010; BOTH et al., 2011; ADEKUNLE et al., 2013; CUNHA NETO et al., 2016, TENZIN et al., 2017). 

However, nonparametric approaches, such as artificial neural networks, have been shown to be appropriate in 

modeling forest attributes (e.g., DIAMANTOPOULOU; MILIOS, 2010; MARTINS et al., 2016, SANQUETTA 

et al., 2018). In this context, recent initiatives have revealed the potential of the Nearest Neighbor (k-NN) method 

in the prediction of biometric variables, such as volume, biomass and carbon stock in trees (SANQUETTA et al., 

2013, SANQUETTA et al., 2015, SOUZA et al., 2019). 

The proposal of this study was to test whether the performance of the nonparametric approach k-Nearest-

Neighbor (k-NN) would improve estimates of individual artificial form factor (f1.3) from trees of the hybrid 

Eucalyptus urophylla x Eucalyptus grandis compared to the Ordinary Least Squares method. Thus, the main 

contributions of the study were: i) the construction and use of parametric and nonparametric models to predict the 

artificial form factor (f1.3); and ii) the comparison between the estimated volumes using different approaches to 

obtain the form factor (linear regression, k-NN, medium ff and ff 0.7) and the actual volume obtained by rigorous 

cubing. Finally, the hypothesis that was tested was if the k-NN approach has the potential to present better precision 

in the estimation of the artificial form factor and, consequently, reduce errors in the estimation of the individual 

volume inherent to the variation in the shape of the tree trunk. 

 

 MATERIALS AND METHODS 

 

Study area and data collection.  

The study was performed in a plantation stand of eight-year-old hybrid E. urophylla x E. grandis, with a 

spacing of 3m x 3m, density of 1,089 trees.ha-1 and with effective planting of 11.33 ha. The plantation stand 

belongs to Ipiaçava Indústria e Comércio de Madeiras LTDA, which is headquartered in Pacajá City, in the 

southwest of the state of Pará on the BR-230 (Transamazon highway), in the Southwest mesoregion with the 

following geographic coordinates: latitude N -03°38'59,20473'' and longitude E -50°57' 19,45084'' (Datum WGS 

84). 

A total of 149 trees were felled and their diameters were measured at 10% (d0.1), 30% (d0.3), 50% (d0.5) 

and 70% (d0.7) along the commercial height of the trunk. The trunk volume was obtained by Huber's equation, 

wherein the volume in m3 of the i-th trunk section (𝑣𝑖) was calculated following the expression 𝑣𝑖  = 𝑔𝑚. 𝑙, where 

𝑔𝑚 = sectional area, in m² in the middle of the i-th section, and 𝑙 = length of the i-th section in meters. The volume 

of the top was obtained assuming the volume of the cone. 

 

Artificial form factor (f1.3) 

The artificial form factor (f1.3) of i-th tree was obtained dividing the actual volume (method of Huber) by 

the volume of a perfect cylinder, which was obtained and based on the total height and transverse section (1.30 

from the ground) (Eq.1) (TENZIN et al., 2017; PACHECO et al., 2017). In general, after the factor (f1.3) calculated 

for each tree, an average value can be used to obtain estimates for the volume of the standing tree. Thus the volume 

of the i-th tree (m3) can be calculated using the formula in Eq.2, where: vi = volume of the i-th tree (m3), diameter 

1.30m from the ground; gi = sectional area of the i-th tree, measured 1.30 from the ground (m2), hi = height of i-th 

tree; (m), and f = form factor (ADEKUNLE et al., 2013; TENZIN et al., 2017). 
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     𝑓1,3 =  
𝑣𝐻𝑢𝑏𝑒𝑟

𝑣𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟
                                                                       (Eq.1) 

 

                                                  𝑣 = 𝑔𝑖 (
𝜋.𝑑1,3

2

4
) . ℎ𝑖. 𝑓1,3                                                              (Eq.2) 

 

Linear regression (parametric modeling) 

Successful mathematical models used in the prediction of the artificial form factor f1,3 of other species in 

planted stands (see DRESCHER et al., 2001; DRESCHER et al., 2010; BOTH et al., 2011; CUNHA NETO et al., 

2016) were chosen for modeling employing classical linear regression using ordinary least squares (OLS). In 

general, the predictive variables in the models reflect relationships between diameters measured at different 

positions relative to the total height of the tree, and with the total height of the tree. Ten artificial form factor 

models (f1.3) were adjusted. The last two models of f1.3 were proposed through experimentation, due to high linear 

correlation with the response variable and by searching for simpler linear models than those described in the 

literature (Table 1). Relative diameter models Hohenadl (d0.i) were also evaluated since they are required for f1.3 

models. The original data set was divided into training (75%) and testing (25%) data by means of random stratified 

sampling, based on tree diameters. 

 

Tabela 1. Modelos matemáticos de fator de forma artificial (f1,3) e diâmetros Hohenadl (d0,i). 

Table 1. Mathematical models of artificial form factor (f1,3) and Hohenadl diameters (d0,i). 

M Artificial Form Factor (f1,3) Author 

FF1 ln(𝑓1.3) = β0 + β1ln(d0.5/d1.3
2 ) + β2ln(d0.1/d1.3

2 ) + εi 

Drescher et al. (2010) 
FF2 ln(𝑓1.3) = β0 + β1ln(d0.5/d1.3

2 ) + β2ln(d0.1/d1.3
2 ) + β3ln[1/(d1.3. h)] + εi 

FF3 𝑓1.3 = β0 + β1(d0.5/d1.3
2 ) + εi 

FF4 𝑓1.3 = β0 + β1(d0.5/d1.3
2 ) + β2[(d0.3. d0.7)/d1.3

2 ] + εi 

FF5 f1.3 = β0 + β1(d0.3/d1.3
2 ) + β2(d0.3. d0.5)/d1.3

2 + β3(d0.5/d1.3)2 + εi Drescher et al. (2001) 

FF6 𝑓1.3 = β0 + β1(d0.3/d1.3
2 ) + β2(1/d1.3

2 ) + β3. d0.5 + εi 
Cunha Neto et al. 

(2016) 

FF7 𝑓1.3 = β1(h/d1.3) + β2(1/h) + β3. d0.7 + εi 
Both et al. (2011) 

FF8 𝑓1.3 = β1(d0.1/d1.3) + β2[(d0.3. d0.5)/d1.3] + εi 

FF9 𝑓1.3 = β1ln(𝑑0.5/𝑑1.3
2 ) + β2ln(d0.3. d0.5)/𝑑1.3 + εi 

Proposed 
FF10 𝑓1.3 = β0 + β1. h + β2ln[(d0.3. d0.7)/d1.3

2 ] + εi 

 Relative Hohenadl Diameters (d0,i)  

DH1 ln( d0.i) = β0 + β1d1.3 + β2(h. d1.3) + εi 

Both et al. (2011) 

DH2 ln( d0.i) = β0 + β1 ln(1/d1.3) + εi 

DH3 ln( d0.i) = β1 ln(1/d1.3) + εi 

DH4 ln( d0.i) = β1 ln(1/d1.3) + β2 (1/h) + εi 

DH5 ln( d0.i) = β0 + β1 ln(1/d1.3) + β2 (1/h) + εi 

Where: M = model; f1.3 = artificial form factor; ln = neperian logarithm; d1.3 = diameter measured at 1.30 m from the ground; d0.1; d0.3; d0.5; d0.7 

= Hohenadl relative diameters at 10%, 30%, 50% and 70%, respectively, of commercial height of the tree trunk; h =   height of the commercial 
trunk; d0.i = diameters relative to 30% or 50%, respectively, of commercial height of the tree trunk; β0, β1, β2, β3 = regression coefficients; and 

εi = random error term; εi = N (0, σ²). 

 

The original data set was divided into training (75%) and test (25%) data using stratified random sampling 

based on tree diameters. The regression models were adjusted in the training set using the ordinary least squares 

method and evaluated in the testing set. The training data of the k-NN regression model were identical to those 

used in adjusting the linear regression models. The training data of the linear regression model were identical to 

those used in adjusting the k-NN regression models. 

The following adjustment quality statistics were used to choose the best linear regression model: PRESS 

statistic, R-squared, standard error of the estimate in percentage (Syx%), root mean square error (RMSE) and 

Akaike Information Criteria (AIC). The student's t-test (α = 0.05) was used to evaluate the significance of 
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regression coefficients. The VIF statistics were obtained for each of the coefficients of the multiple regression 

models through the expression: VIF(β̂i) = 1/(1 − Ri
2), where: Ri

2 = coefficient of determination obtained by the 

regression of the explanatory variable Xi(i = 2, … , p) with the other independent variables. 

Linear regression residues were evaluated for adherence to the assumptions of normality (Shapiro-Wilk, 

α = 0.05), homoscedasticity (Breusch-Pagan, α = 0.05), and autocorrelation (Durbin-Watson, α = 0.05). The graphs 

of residuals versus adjusted values (dependent variable scale) and the Normal Probability Paper graph (Q-Q plot) 

were also analyzed. All analyses were performed using several packages of the statistical environment R, version 

3.4.3 (Table S1). The adjustment of all linear regression models was done using the "lm" function of the "stats" 

package available in the R-base. 

 

Regression k-NN - (non-parametric modeling) 

The instance-based learning algorithm (k-NN) is a type of supervised and non-parametric method 

(HECHENBICHLER; SCHLIEP, 2004). In its most basic version, the use of k-NN requires three essential 

elements: a set of labeled objects, a distance or similarity metric to calculate the distance between objects and the 

value of k (number of nearest neighbors) (LI et al., 2017). 

To implement the algorithm of the nearest neighbor, we used the interface of the "caret" package that has 

the k-NN (k-nearest neighbors) method (KUHN, 2016). This simpler version only needs to find the k value (number 

of nearest neighbors) of optimal fit. By default, the Euclidean distance was used. The training set (75%) was used 

to find the optimal adjustment of hyperparameter k for the k-NN estimator using repeated cross-validation, and the 

test set was used to evaluate the generalization capacity of the best model built on new data. Therefore, the test set 

was excluded from the construction process of the k-NN models. The performance comparison between the 

approaches (linear regression and k-NN) was performed on the test set. 

The selection of relevant variables is an important task in the process of constructing the k-NN models. 

Therefore, the marginal importance of covariates for the k-NN estimator was measured using metrics independent 

of the adjusted model. This approach can be applied using the 'filterVarImp' function of the 'caret' library (see 

KUHN, 2016). By this method, the default is to adjust smoothed curves between each predictor and the response 

variable using the LOESS regression method, allowing estimates to be obtained within a local neighborhood 

window. The LOESS regression has the 'span' argument that controls the size of the neighborhood and therefore 

the degree of smoothing of the regression and can range from 0 to 1. Here, we use the default (span = 0.75) of the 

'loess' function of the R-base stats package. After adjusting the individual models, the coefficient of determination 

(R²) values are taken and computed as a relative measure of the importance of the variable. To evaluate the 

importance, all the predictors used in the linear regression models and other relations of diameter and height were 

considered. 

To train the k-NN regression model, the k-fold cross-validation method was used (KUHN; JOHNSON, 

2013), and a manual grid with k candidate values optimum setting of the hyperparameter was established. In the 

learning process, to reduce the computational overhead intrinsic to the algorithms based on instances, we 

established a maximum k of 25 nearest neighbors, starting with 2-NN. 

The performance of the k-NN model, in each disjointed subset k of validation, was measured using RMSE 

(Root Mean Square Error) metrics, rRMSE (Relative Root Mean Square Error) and R² (R-squared) (KVALSETH, 

1985; KUHN, JOHNSON, 2013). In addition, the Pearson correlation coefficient (r) was calculated to quantify the 

correlation between the observed and predicted values for each variant k-NN and bias. The final performance of 

each k-NN model was obtained by generating the arithmetic mean of the estimates in the 50 disjointed subsets k 

of the 5x10-folds CV scheme. All analyses were performed using several packages of the statistical environment 

R, version 3.4.3. 

 

RESULTS 

 

The Pearson correlation coefficients (r) between the dependent and independent variables contained in 

the artificial form factor models (f1.3), were significant at the level of α = 0.05, except for the correlation between 

f1.3 and h/d1.3 (r =-0.062ns; FF7). The f1,3 in its natural form showed a degree of association of less than 70% with 

its regressors, in most cases. However, there were strong correlations between f1.3 and (d0.3. d0.7)/d1.3
2  (r =0.943*; 

FF4, FF9 and FF10), f1.3 and (d0.3. d0.5)/d1.3
2  (r =0.873*; FF5), and also f1.3 and (d0.5/d1.3) 2(r =0.864*; FF5). 

Severe multicollinearity effects on model coefficient estimates were detected for most multiple linear 

regression models, except for the models FF4, FF9 and FF10 (VIF < 10); for the models with VIF > 10 there were 

correlations between predictor variables greater than 80%. 

The FF5 model was not considered satisfactory since it presented nonsignificant coefficients β2 and β3 (α 

= 0.05). The F-Snedecor statistic was significant (α = 0.01) for all adjusted form factor models, thus rejecting the 

null hypothesis of non-regression. The Durbin-Watson test (α = 0.05) did not show evidence of autocorrelation of 
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the residuals for the fitted models, in other words, the residuals are independent. The diagnosis of homoscedasticity 

and normality of the residues was done only for the FF4, FF9 and FF10 models, since they were the only ones that 

had significant differences for all their regression coefficients (α = 0.05), without multicollinearity problems (VIF 

< 10) , acceptable R2 (> 86%) and Syx% less than 5% (Table S2). 

The null hypothesis of homoscedasticity of variance was rejected (Breusch-Pagan; α < 0.05) for the FF4 

and FF10 models. The FF9 model was the only one that had a normal distribution of residuals (Shapiro-Wilk; α = 

0.05); the normal distribution of the residuals was verified through the Quantile-Quantile plot by analyzing the 

proximity of the points (theoretical quantile and standardized residuals) to the red line. For this model the residuals 

were homoscedastic and non-tendentious, with an average close to zero. The residuals also showed a linear pattern, 

as suggested by the smoothing curve (red line in the residual vs. predicted plot) (Figure 1). 

In this study, the FF9 model had the best performance with excellent fit quality statistics. For this model 

the degree of explanation of the dependent variable (f1.3) by the regressors was 99% and the Syx% was less than 

10%. The equation DH2 used to adjust d0.3 was the only one that met all the linear regression assumptions. With 

respect to the models for prediction of d0.5, the DH4 model was indicated by its lower AIC value. 

Machine learning algorithms have hyperparameters that need to be tuned in order to avoid overfitting and 

to find the best compensation bias-variance model. Here, we used the basic version of k-NN which required finding 

the optimal value of k (number of nearest neighbors) for which the loss function RMSE was minimal. To obtain 

an indication of the covariant space most appropriate to the k-NN estimator, before submitting the data to the 

learning process we identified the marginal importance of potential predictors (those used in linear regression 

models and others) to the estimator k-NN (Figure S1), and then the performance of the models was estimated using 

repeated cross-validations. 

 

 

 
 

 
 

Figura 1. Resíduos versus valores ajustados (escala da variável dependente) e gráfico quantil-quantil para os 

modelos sem autocorrelação, multicolinearidade e coeficientes da regressão nulos. 

Figure 1. Residual versus fitted values (dependent variable scale) and quantile-quantile plot for models without 

autocorrelation, multicollinearity and null coefficients of regression. 
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From the analysis of the marginal importance of the covariates to the k-NN estimator, we obtained the 

result that using the covariate (𝑑0.3. 𝑑0.7)/𝑑1.3
2  (logarithmic or not) would be the best approach to obtain a more 

accurate model. Indeed, the marginal application of both covariates ensured better performance to the estimator, 

but the performance did not differ between the two; therefore, the use of the covariate without the logarithm was 

preferred. Finally, using the covariate (𝑑0.3. 𝑑0.7)/𝑑1.3
2  (non-logarithmic) and 15 nearest neighbors (k = 15) of the 

instance was predicted, and this was the configuration with better generalization capacity (lower RMSE ) and  was 

therefore used to predict the artificial form factor. 

The hyperparameter k has a significant influence on the performance of the k-NN estimator. The rRMSE 

curve in cross-validation shows the expected pattern, i.e., delineating the "U" shape. In general, the curve had a 

decreasing pattern reaching the best performance when k = 15 and from that point the increase of k caused a 

decrease in accuracy. In contrast, the learning set error decreases as the flexibility (< k) of the model increased 

(Figure 2a). Thus, comparison of the curves shows that k = 15 represents the best balance between bias and variance 

such that it minimizes the prediction error of the form factor. The RMSE, rRMSE, r and bias values in the cross-

validation, when using the 15-NN model, were 0.0379 m³, 6.19%, 0.8492 and 0.198%, respectively. Other quality 

metrics in the validation and training sets, as a function of k, are also presented in Table S3. 

 

 

 
Figura 2. a) Perfil da medida rRMSE nos conjuntos de treino e validação, como função de k. Em que: rRMSE = 

Raiz do Erro Quadrático Médio Relativo; k = número de vizinhos mais próximos; f1,3 = fator de forma 

artificial; d1,3 = diâmetro medido a 1,30 m do solo; d0,3 e d0,7 = diâmetros relativos Hohenadl a 30% e 

70%, respectivamente, da altura do fuste comercial da árvore; linha vertical pontilhada = representa o 

melhor k na validação; linha horizontal pontilhada = representa desempenho no conjunto de teste usando 

a configuração k-NN ótima; b) Histogramas de frequência residuais para o dados de teste; c) Resíduos 

versus valores estimados para os dados de treinamento; e d) Resíduos versus valores estimados no 

conjunto de teste. Em que: 15-NN = modelos k-NN escolhido que usa 15 vizinhos mais próximos e a 
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covariável de maior importância marginal para predizer o fator de forma artificial; FF9 = modelo de 

regressão linear selecionado. 

Figure 2. a) Profile of the rRMSE measure in the training and validation sets as a function of k. Where: rRMSE = 

Relative Mean Square Error Root; k = number of nearest neighbors; f1.3 = artificial form factor; d1.3 = 

diameter measured at 1.30 m from the ground; d0.3 and d0.7 = Hohenadl relative diameters at 30% and 

70% respectively of commercial height of the tree trunk; dotted vertical line = represents the best k in 

the validation; dotted horizontal line = represents performance in the test set using the optimal k-NN 

configuration; b) Residual frequency histograms for test data; c) Residual versus estimated values for 

the training data; and d) Residual versus fitted values in the test set. Where: 15-NN = chosen k-NN 

models that uses 15 nearest neighbors and the covariant of greater marginal importance to predict the 

artificial form factor; FF9 = selected linear regression model. 

 

The analysis of frequency histograms indicates that the 15-NN model has the highest concentration of 

residual values close to zero (Figure 2b), and this fact is confirmed by the residual plot versus fitted values (Figure 

2c). The training set had a discrepant point (observed f1.3 = 0.8214), and both models (FF9 and 15-NN) had greater 

difficulty predicting it. In general, the quality measures done using the training set were better for the 15-NN 

model. 

The resubstitution error is not a good parameter to evaluate a model's prediction ability using new data. 

Therefore, the predictive quality of the best RL model (FF9) and the best k-NN configuration (15-NN) (adjusted 

to the training set, n = 113) was validated in the test set (n = 36). At tree level, the 15-NN model was more accurate 

to predict the individual form factor. The average values of r, R², RMSE, rRMSE and bias were 0.8749, 0.7655, 

0.0376 m³, 6.12% and 1.51% for the 15-NN model. For the FF9 model, we found r = 0.5494, R² = 0.2743, RMSE 

= 0.0608 m³, rRMSE = 9.88% and bias = 1.32% (Figure 2d and S2). 

 

DISCUSSION 

 

Linear regression (LR) is a simple parametric method with consolidated use in the prediction of forest 

biometric variables. Most commonly, the estimation of single or multiple RL parameters is done using the ordinary 

least squares (OLS) method. By this method, the choice of the appropriate model should ensure, in addition to 

good quality of fit statistics, the non-violation of assumptions of independence, homoscedasticity and normality 

of errors. If there is a violation of any of these hypotheses, the inferences (confidence intervals and hypothesis 

tests) based on the LR model may be erroneous or unreliable. For multiple models, it is important to verify the 

existence of collinearity or multicollinearity, which refers to the strong linear correlation between predictor 

variables. 

In this study, the selection of the best linear model to predict the artificial form factor was critical for the 

diagnosis of the residuals, the significance of the regression coefficients and the lack of a strong correlation 

between predictors. However, finding a linear model for f1.3 prediction that met all the assumptions of LR was not 

trivial. In an initial analysis, most of the adjusted multiple models had their applicability rejected by the indication 

of existence of multicollinearity and / or non-significant regression coefficients. Subsequently, the difficulty was 

in finding models with homoscedastic and normal residuals. 

The models FF2 and FF6 were indicated to predict the artificial form factor of Tectona grandis 

(DRESCHER et al., 2010; CUNHA NETO et al., 2016) and the FF5 model was recommended for Pinus elliottii 

(DRESCHER et al., 2001) were not successful in predicting f1.3 of trees in the current study. Here, both models 

presented strong evidence of multicollinearity, and specifically the FF5 model revealed non-significant regression 

coefficients. 

It is common that high bivariate correlations between predictor variables (r > 0.75) lead to 

multicollinearity problems (MAROCO, 2010). This situation was verified for the FF2, FF5 and FF6 models, whose 

covariates showed linear correlations higher than 0.85 in most cases and had severe multicollinearity effects 

indicated by the VIF statistic. Here, the models with VIF > 10 had their general applicability rejected, because it 

becomes difficult to evaluate the relative importance of the predictor variables to explain the variation in the 

dependent variable (LIAO; VALLIANT, 2012). Moreover, as the variance inflation factor increases, the variance 

of the regression coefficient also increases (DIAMANTOPOULOU, 2005). 

Multicollinearity does not affect the mathematics of model determination but influences the interpretation 

of each parameter estimation and on the predictive power of the constructed model. In multiple regression, the 

presence of severe multicollinearity causes instability in the estimates of the coefficients and consequently the 

quality of the interpretation of the coefficients associated with the covariates, which is one of the greatest 

advantages of the method. In practical terms, the loss of interpretability of the coefficients is observed, for example, 

by the change of signal for the regression coefficient, or even by a sensitive change in its magnitude with the 
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inclusion or removal of model covariates. Moreover, the addition of correlated variables also causes an increase 

in the standard errors of the model parameter estimates resulting in less informative prediction intervals. 

The Bartlett test (α = 0.05) showed homoscedasticity of variance within the groups of methods, and 

Analysis of Variance (ANOVA) was used to compare the volume averages between the different methods. The 

results indicated that the estimated average volumes using the different methods did not differ between them and 

also were equal to the observed mean volume (p = 0.7693) (Figure S3 and Tables S4). Acceptance of the null 

hypothesis of ANOVA reveals the efficacy of the methods to estimate the average individual volume. 

Despite this, it is also interesting to compare the individual volume estimates using the artificial form of 

each tree predicted by the LR and k-NN models, the observed average form factor (f1.3 observed mean factor values 

= 0.61), and the form factor 0.7 (f1.3 = 0.7) with the actual volume obtained by rigorous cubing (Huber). At tree 

level, individual volume estimates were more biased when using the average form factors approach, with a 

tendency to overestimate (Figure 3b and 3c). In general, the mean bias was -4.48% and -18.89% when using the 

mean factors f1.3 = 0.61 or f1.3 = 0.7, respectively. On the other hand, the use of individual artificial form factors 

estimated by the 15-NN model implied a smaller bias in the estimation of the individual volume, as well as more 

accurately estimated the total volume (sum of the volume of individual trees) (Figure 3a). The bias values were 

1.56% and 0.39% for the FF9 and 15-NN models, respectively. 

 

 

 
Figura 3. Resíduos versus volumes estimados de para observações do conjunto de teste (n = 36). São mostradas as 

diferenças residuais entre os modelos 15-NN e FF9 (a), 15-NN e f1.3 médio = 0.61 (b) e, 15-NN e f1.3 = 

0.7. 

Figure 3. Residual versus fitted volumes for test set observations (n = 36). The residual differences between the 

15-NN and FF9 (a), 15-NN and f1.3 average = 0.61 (b) and, 15-NN and f1.3 = 0.7 models are shown. 

 

Using non-parametric methods such as k-NN has advantages over classical linear regression methods. 

One benefit is that it does not require prior specification to a statistical model that describes the relation between 

the target response and the predictors; another is to not require compliance with statistical assumptions 

(FEHRMANN et al., 2008). Some older and even more recent studies have demonstrated the potential of the 

method based on instances to predict forest variables. Fehrmann et al. (2008) reported that the k-NN approach was 

superior to linear regression and mixed-effect models for estimating individual tree biomass of the species Picea 

abies (L.) Karst and Pinus sylvestris L. from data from the National Forest Inventory of Finland. Sanquetta et al. 

(2015) mentioned an increase up to 16.5% in the reduction of the standard error of estimation for models based on 

the famous Schumacher-Hall model in trees from environmental restoration plantations in the Brazilian Atlantic 

Forest biome. Sanquetta et al. (2018) reported that the k-NN approach improved the volume estimates of 

Cryptomeria japonica in southern Brazil, providing a more accurate estimate of total and commercial volumes. 

The process of selecting variables in machine learning models, such as k-NN, is fundamental to the 

success of predictive modeling. In general, two strategies are described to evaluate the importance of a predictor 

variable in machine learning tasks: a) those that use the information of the adjusted model; and b) those that do 

not use the information from the adjusted model (KUHN; JOHNSON, 2013). Unfortunately, for the k-NN 

estimator there is still no approach based on the fitted model. In this study, the LOESS regression coefficient 

values were used as a relative measure of the importance of the covariate. Using this approach to identify potential 

predictors for k-NN was quite attractive as it allowed us to more efficiently find the optimal model fit; otherwise, 

an extremely tedious process of experimenting with predictors and their combinations would be necessary. 
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CONCLUSIONS 

The results of this study permitted the following conclusions: 

• The use of the k-NN estimator to predict the artificial form factor and thus to obtain less biased estimates of 

the individual tree volumes was evaluated and considered superior to linear regression and average form 

factors. 

• In the case of multiple linear regression, the greatest difficulty was to obtain models without confounding 

effects between independent variables. The models adjusted here were successful in modeling the form factor 

of other species, but in this study suffered serious effects of collinearity or multicollinearity. 

• The use of the form factor 0.7 as a generic approach to correct the volume of trees is not indicated, as it was 

evident that the individual volume estimates suffered from high bias. 
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