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Resumo 

Modelagem do afilamento do fuste de eucalipto em sistema de integração Lavoura-Pecuária-Floresta. Este 

trabalho teve como objetivo avaliar e comparar a modelagem de efeitos mistos e redes neurais artificiais para 

estimar o afilamento de eucalipto em sistemas de integração Lavoura-Pecuária-Floresta (iLPF). Os dados foram 

coletados em uma área experimental de iLPF, implantada pela Empresa Brasileira de Pesquisa Agropecuária – 

EMBRAPA Agrossilvipastoril, localizada no município de Sinop, Estado do Mato Grosso. Para alcançar o 

objetivo proposto, 165 árvores com 51 meses de idade foram cubadas para a modelagem do afilamento com 

modelos de efeitos mistos e redes neurais artificiais. O desempenho destas técnicas foi avaliado por meio de 

estatísticas de precisão e análise gráfica. A modelagem de efeitos mistos e redes neurais artificiais são eficientes 

e recomendadas para estimativa do afilamento de eucalipto em sistema de integração Lavoura-Pecuária-

Floresta; contudo, apesar de ambas técnicas avaliadas apresentarem resultados precisos para predição do 

afilamento das árvores amostradas, a rede neural artificial prediz valores com maior precisão que a modelagem 

de efeitos mistos.  

Palavras-chave: Biometria florestal, Inteligência artificial, Modelagem não linear mista. 

 

Abstract 

This paper aims to evaluate and compare the mixed effects modeling and artificial neural networks in order to 

estimate the taper of eucalyptus in integrated Crop-Livestock-Forestry (iCLF) systems. The data were collected 

in an experimental area of iCLF, implanted by the Brazilian Company of Farming Research – EMBRAPA 

Agrossilvipastoril, located in the municipality of Sinop, Mato Grosso State, Brazil. To reach the proposed aim, 

165 trees with 51 months of age were scaled for the taper modeling with mixed effects models and artificial 

neural networks. The performance of these techniques was evaluated through precision measurements and 

graphical analysis. Mixed effects modeling and artificial neural networks are efficient and recommended in the 

estimative of taper of eucalyptus in integrated Crop-Livestock-Forestry system; however, despite both 

evaluated techniques present accurate results in predicting the taper of the sampled trees, the artificial neural 

network predicts values with greater precision than the modeling of mixed effects. 

Keywords: Forest biometry, Artificial intelligence, Nonlinear mixed modeling. 

________________________________________________________________________________________ 

 

INTRODUCTION 

 

The growing demand for various products of agricultural and forestry origin has suggested alternative 

cultivations that aim for greater productivity. Among these alternatives, there is Crop-Livestock-Forestry 

integration systems (iLPF), which unite different production systems in a same area. 

In these production systems, agricultural practices, trees, pastures, and animals are integrated to enhance 

ecological and economic interactions (TORRES et al., 2016). It is important to note that these systems of 

production have been growing through development programs, such as the Brazilian Low Carbon Agriculture 

Program (ABC), for example, which was implemented by the federal government of Brazil through Law No. 

12,187 of December 29, 2009, establishing the National Policy on Climate Change (PNMC). 

In this context, there is a need and interest on the part of forest producers and managers to manage the 

forest component, aiming at the quantification of production, since this information subsidizes forest planning. 

Thus, modeling techniques using statistics and computational tools are used to obtain accurate production 

estimates. Among the various techniques used in Brazil and in the world, there are the taper functions, which can 

be used for volumetric estimation and wood assortments. 
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Additionally, the modeling of the stem form in populations established in monoculture is a subject 

sufficiently spread out in the Brazilian forest sector, with diverse studies developed and considered to represent 

the profile of the Eucalyptus species stem. Nonetheless, research on the shape of Eucalyptus clones’ stems 

established in iCLF systems is still scarce. Regarding the use of new techniques for shaping the profile of the stem, 

Silva et al. (2016) obtained promising results with the use of artificial intelligence in iCLF systems. Therefore, the 

use of new modeling techniques can generate estimates with greater precision, such as mixed effects modeling 

(MEM) and artificial neural networks (ANN). 

So, mixed effects modeling is a technique characterized by using linear or nonlinear models, depending 

on the objective under study, fixed, and random effects parameters, when having repeated measurements. 

According to Schabenberger and Pierce (2001), this technique should be used when there is a set of data that are 

grouped or that need to include random effects. In spite of the efficiency of MEM, this technique for tree tapering 

is relatively recent in forestry engineering, which is why there are few developed studies that employ it with taper 

functions; in this way, the studies of Sharma and Parton (2009) and Guangyi et al. deserve to be pointed out (2015). 

In turn, artificial neural networks are computational models inspired by the nervous system of biological 

brains. Braga et al. (2007) have defined it as parallel systems consisting of simple processing units, also called 

artificial neurons, connected and operating specifically unidirectionally to perform certain mathematical functions. 

Hence, the fundamental elements of an ANN are the artificial neurons, arranged in one or more layers in a parallel 

form and interconnected by many connections (network), forming, consequently, the ANN system (SILVA et al., 

2010). 

The employment of ANN in forest science has confirmed the efficiency of this technique in several 

situations, with emphasis on estimates of dendrometric variables. Its use as a tool to estimate the diameter along 

the stem was considered efficient in studies carried out by Schikowski et al. (2015) and Martins et al. (2017) as 

well. 

Given the importance of stem modeling studies in agroforestry systems, this article aimed to evaluate and 

compare the modeling of mixed effects and artificial neural networks to estimate the eucalyptus tapering in a Crop-

Livestock-Forestry integration system.  

MATERIAL AND METHODS 

Characterization of the study area 

The data for this study were obtained in two experimental areas of the Crop-Livestock-Forestry 

integration system (iCLF), called iCLF milk and iCLF cut, whose implantation was carried out by the Brazilian 

Agricultural Research Corporation (Embrapa Agrosilvipastoril) in the municipality of Sinop, in northern Mato 

Grosso State, Brazil, under coordinates 11º50'53"S and 55º38'57"W. According to the Köppen classification, the 

climate of the region is tropical type of monsoon, with three months of dry season and accumulated precipitation 

rainfall between 2,500 and 2,800 mm in the year. Along with, the average annual temperature is approximately 24 

to 26°C, with maximum and minimum temperatures close to 40 and 20°C respectively, and altitude of 380 m 

(ALVARES et al., 2013) in addition to a flat relief and predominance of clayey Oxisol. 

The experiments were implemented in February (iCLF milk) and December (iCLF cut) of 2011, under a 

randomized block design (RBD) with three treatments: crop-livestock-forestry (T1); livestock-forestry (T2), and 

homogeneous planting of eucalyptus (T3). In treatment T1, it was adopted the planting arrangement of eucalyptus 

trees in triple rows consortium additionally to piatã grass pasture (Brachiaria brizantha cv. Piatã) and in integration 

with corn for silage, and catlle raising of Girolanda dairy cows as well. In treatment T2, the planting of trees in 

triple rows consortium with piatã grass (Brachiaria brizantha cv. Piatã) and cattle raising of Nellore for cut was 

adopted. 

The treatments were established in different integration arrangements (Table 1). The forest component 

used was the hybrid clone Eucalyptus grandis x Eucalyptus urophylla and the planting orientation of trees in lines 

was in the East-West direction, both planted in grooves 30 cm deep.  

 

Tabela 1. Descrição dos arranjos de integração e distribuição de frequência das árvores amostradas nos diferentes 

tratamentos. 

Table 1. Description of the integration arrangements and frequency distribution of the trees sampled in the different 

treatments. 
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Treatments Space arrangement (m) N (tree.ha-1) L N 

T1 3.0 x 2.0 x 15 714 3 56 

T2 3.5 x 3.0 x 30 270 3 54 

T3 3.5 x 3.0 952 – 55 

Total - 1936 - 165 

N (tree.ha-1): number of trees for hectare; tree: trees; N: number of cubed trees; e L: line number of plantation with trees in the treatments (T1 

and T2). 

Database   

The data for accomplishment of this study had been gotten by means of cubage of 165 trees in the 51 

months of age distributed between the studied treatments (Table 1). The cubed trees had been selected on the basis 

of diameter distribution (amplitude=5 to 23.7 cm) of the proceeding treatments from the data of the forest 

inventory. The selected individuals were felled, sectioned and the diameters with bark were measured with the 

help of a caliper and tape in the following heights: 0.10 m; 0.70 m; 1.30 m and later in 1.0 m intervals up to a 

minimum diameter of approximately 1.0 cm.  

In each tree, in addition to the diameters (di) at various heights (hi), the diameter at 1.30 m from the 

ground level (dbh) and the total height (h) were measured. The individual tree volume, considered as real, was 

determined by the Smalian methodology. 

 

Stem Tapering  

The stem shape was evaluated using two techniques: mixed effects modeling (MEM) and artificial neural 

networks (ANN). 

 

Mixed Effects Modeling (MEM) 

The mixed effects modeling procedure was employed using the fifth degree polynomial (Equation 1) 

proposed by Schöepfer (1966) in order to obtain estimates of the diameter along the stem of the trees in different 

treatments. 

 
dij

dbhi

 = ∅0 + ∅1Tij + ∅2Tij
2 + ∅3Tij

3
 + ∅4 Tij

4
 + ∅5Tij

5
 + εij (1) 

in which: dij: bark diameter (cm) of the i-th tree at the j-th height (m); dbhi: diameter at 1.3 m from the ground 

level (cm) of the i-th tree; ∅: fixed and random parameters; Tij: relative height (
hi

h
) of the i-th tree in the j-th position 

of the stem; and εij: random error. 

 

The fifth-degree polynomial was adopted because it is a non-segmented model widely used by 

professionals in the forest sciences and is frequently used in forest inventories when the objectives are to quantify 

multiproducts and evaluate the shape of the stem at different ages and spacings, it is due to the fact of the easiness 

of adjustment and precision that this model generally provides. The structure of the mixed tapping model used is 

represented in Equation 2. 
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in which: b-N (0, σ 2); and ε-N (0, σ2I). The vector β represents the fixed effects and the vector b the random ones.  

 

The adjustment of the model was performed in a nonlinear form, applying the nonlinear mixed model 

(nlme), adopting as random effect the different treatments in order to increase the precision of the diameter 

predictions and to group the data obtained in the different spacings and integration arrangements. 
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Artificial Neural Networks (ANN) 

The ANNs were trained to obtain an ideal set of weights that provide good results for the prediction of 

diameters (di) along the bole (variable of the output layer), using as quantitative variables in the input layer the 

dbh, h, and hi and the treatments as categorical input. It was used the multilayered type of ANN (input, 

intermediate, and output) with supervised training and with the backpropagation error algorithm associated with 

the descending gradient, which has a universal capability to approximate functions (HORNIK et al., 1989).  

The networks were trained with only one intermediate layer and the number of neurons ranging from 1 

to 15 units. The activation function used in this layer was the hyperbolic tangent (Equation 3), while in the output 

layer the linear function was the one used (Equation 4). 

 

f(α) = 
eα –  e-α

eα + e-α (3) 

(α) = ∑ xi wi + bs

s

s = 1

 (4) 

in which: f(α): activation function; xi: vector of inputs; wi: vector of synaptic weights; and bs: bias. 

 

The grid search method was used to obtain the weights, in order to minimize the predictions error. This 

method requires the definition of a set or sequence of values for each parameter, so that the search is performed 

by means of successive adjustments using all possible combinations of parameters (BERGSTRA; BENGIO, 2012). 

Moreover, the ANN training consisted in the applying of the multiple cross-validation method (k-fold) 

combined with the grid search one. According to Shalev-Shwartz and Ben-David (2014), the k-fold method 

consists of dividing the database randomly into k subsets of similar dimensions and, for each configuration of the 

algorithm, perform k trainings, separating one subset for validation at a time. Thus, all instances are used k-1 times 

for training and once for validation. The measure of accuracy of each configuration is obtained by the average of 

the mean squared error of the k validations. After the cross-validation step, the algorithm performs the training of 

a final model for the best performance configuration using the entire set of training data.  

As a result, the best configuration was the one that gave the model the smallest mean square error obtained 

by cross-validation with a maximum number of 3,000 cycles. The training was automatically interrupted by the 

algorithm when the accuracy of the model was not increased by 20 consecutive cycles. Nonetheless, the network 

training was performed in R programming language (R CORE TEAM, 2018) using the h2o package (THE H2o. 

AI TEAM, 2017) that performs the k-fold cros-validation automatically from the determination of the number of 

subsets (folds) by user, which in this study was defined as 5 folds. Therefore, the database was divided in 5 parts, 

being 4 for training and 1 for validation and so on until all the parts were trained and validated with each other. 

Finally, the best validated network was trained for the entire database.          

 

 Accuracy statistics utilized   

Model adjustment, neural network training, and statistical procedures, were performed in Software R, 

version 3.4.4. The precision and accuracy of the modeling techniques were analyzed based on the following 

statistical criteria: Pearson's correlation coefficient (ryŷ ), square root mean error (SRME%), and graphical analysis 

of the residues in (E%), calculated by Equations 5, 6 and 7, respectively: 
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RQEM% = 
100

y̅i
 √

∑ (yi - ŷi)2n
i=1

n
 (6) 

E% = (
yi - ŷi

yi

) * 100 (7) 

in which: ryŷ : Pearson correlation coefficient; ŷi: estimated variable; yi: observed variable; 𝑦̅ i: average of observed 

variable; SRME%: square root mean error in percentage; and E%: percentage residue. 
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RESULTS 

 

The diameter distribution of sampled trees has shown to be distributed symmetrical, when dbh classes 

were equal to 2 cm. In order to characterize the variation of the stem's shape of these trees, a graph was plotted by 

height (hi) and diameter (di) along the stem, as well as with relativized di and hi variables (Figure 1). 

 

 

 
Figura 1. Variação do perfil do fuste das árvores amostradas. a: diâmetro por altura; b: diâmetro relativo por altura 

relativa. 

Figure 1. Variation of stem profile of the sampled trees. a: diameter over height; b: relative diameter over relative 

height. 

 

All fixed coefficients were significant and only the coefficient ∅5 remained constant (Table 2), due to the 

attempt of adustment of the Schöpfer polynomial with all non-convergent random coefficients. As a consequence, 

only the coefficients from ∅0 to ∅4 were considered as random, which proves the variation of these between the 

treatments. 

 

Tabela 2. Coeficientes fixos para todo o conjunto de dados e aleatórios por tratamento. 

Table 2. Fixed coefficients for all data set and random by treatment.  

Model 
Treat. ∅0 ∅1 ∅2 ∅3 ∅4 ∅5 

Random parameters 

Schöepfer 

T1 1.2120 -3.4416 13.0674 -27.8758 26.9320 -9.9008 

T2 1.1990 -3.5508 13.0676 -28.0515 27.2022 -9.9008 

T3 1.1738 -3.3033 13.0674 -28.4421 27.3921 -9.9008 

Fixed Parameters 

T 1.1949* -3.4319* 13.0674* -28.1231* 27.1754* -9.9008* 

Treat .: treatments studied; ∅i : estimated coefficients; and T: grouped data; *: significant at 5% probability. 

 

All ANNs trained with the hyperbolic tangent activation function presented satisfactory results for 

estimating the diameters along the stem. The optimal weights and bias obtained for the best ANN are listed in 

Table 3. 
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Tabela 3. Pesos e bias obtidos para a melhor rede neural artificial treinada. 

Table 3. Weights and bias obtained for the best trained artificial neural network. 

Neurons 

Weights  Bias  

Intermediate layer 
 layer 

output 

 

b1 b2 

T1 T2 T3 
dbh 

(cm) 

H 

(m) 

hi 

(m) 

 di 

(cm) 

 

1 -0.419 -0.632 0.364 0.004 -0.279 0.215  -0.737  -0.145 0.445 

2 0.354 0.401 0.530 -0.165 0.359 -0.812  0.980  1.194  

3 0.527 -0.221 -0.084 0.118 0.209 0.246  -0.364  -0.087  

4 0.301 0.272 0.173 -0.170 0.066 0.763  -2.265  1.144  

5 -0.453 -0.251 -0.135 -0.619 0.302 -0.260  -0.541  -0.381  

6 0.657 0.479 -0.541 -0.158 -0.035 1.640  0.519  0.601  

7 0.341 0.288 -0.336 0.281 0.103 -0.306  0.752  -0.517  

8 -0.843 -0.394 0.281 0.075 -0.080 0.315  -0.608  -0.211  

9 0.721 0.780 -0.926 -0.043 -0.230 0.337  -0.895  0.085  

T1: treatment 1; T2: treatment 2; T3: treatment 3; dbh: diameter at 1.3 m from ground level; h: total height; hi: height of sections; di: diameter 

of sections; b1: bias of the intermediate layer; and b2: bias of the output layer. 

The results show that ANN with six neurons in the input layer, nine neurons in the middle layer and one 

neuron in the output layer provided the highest Pearson linear correlation coefficient and the lowest root of square 

error percentage when compared to the others, therefore, this was the selected one for comparison with mixed 

modeling (Table 4). 

 

Tabela 4. Medidas de precisão da modelagem mista e rede neural artificial para estimativa dos diâmetros ao longo 

do fuste das árvores de eucalipto. 

Table 4. Precision measurements of mixed modeling and artificial neural network to estimate the diameters along 

the stem of eucalyptus trees. 

Technique ryŷ SRME% 

Mixed effects modeling 0.98483 6.65 

Artificial neural network 0.98609 6.34 

ryŷ : Pearson correlation coefficient; and SRME%: square root of mean error in percentage. 

 

Based on the precision statistics, it is noted that the techniques of MEM and ANN present similar and 

accurate values, however, it is observed in these criteria that ANN has higher ryŷ     and lower SRME%, in addition 

to these measurements, the graphic analysis of the residues was used to compare both techniques (Figure 2). 
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Figura 2. Distribuição dos resíduos em percentagem e histograma dos erros para a modelagem de efeitos mistos e 

redes neurais artificiais. 

Figure 2. Distribution of residuals in percentage and histogram of the errors for the mixed effects modeling and 

artificial neural networks. 

 

The graphs of residuals allow to evaluate the behavior of errors along the stems and similarity is observed 

between MEM and ANN with adequate distribution along the regression line, indicating good accuracy between 

the observed and estimated values. Nevertheless, heterocedasticity is observed in the estimation made for the apical 

part of the trees, with greater dispersion generating, consequently, overestimation and underestimation. The 

histograms of residues showed a symmetrical and average distribution around 0, confirming the accuracy of the 

evaluated techniques.  

When plotting observed versus estimated values (Figure 3) of the techniques, it is possible to note that in 

both the dispersion occurs along the line that starts from the origin and forms an angle of 45 degrees. However, 

when considering the coefficient of determination (R2) of straight lines means, the ANN mean has a higher value 

(0.99) when compared to the MEM (0.98), indicating that the observed and estimated values coincide. 

 
Figura 3. Diâmetro observado e diâmetro estimado pela MEM e RNA. 

Figure 3. Diameter observed and diameter estimated by MEM and ANN. 
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The illustration of the tapering with the mean diameter along the stem of the observed and estimated 

values by MEM and ANN (Figure 4), confirms that both accurately estimated the profile of the mean tree. This 

affirmation is confirmed by the overlap of the curves, there is greater difference of MEM in the basal part of the 

stem. 

 

 
Figura 4. Perfil médio observado e estimado pela MEM e RNA. 

Figure 4. Mean profile observed and estimated by MEM and ANN. 

 

Based on the accuracy measurements, on the residual distribution, on the observed versus estimated data, 

and estimated curves of the mean tree profile, it is confirmed that the two techniques present accurate results for 

the tapering estimation of the sampled trees, being the ANN the one with a small superiority.  

 

DISCUSSION 

 

The shape of the tree stem is highly influenced by the spacing (SCOLFORO; THIERSCH, 2004), so, 

when considering it in the random effect of the mixed modeling and categorical variables of the artificial neural 

networks, it was possible to obtain more precise estimates. 

Although the number of random parameters used in mixed modeling is directly related to the precision of 

estimates, when the model has a high number of parameters, the matrix procedure to be performed by the software 

is not feasible and in many cases there is no convergence, the ideal is to decrease the number of random parameters 

of the model. 

The difficulty in estimating the smallest diameters in the stem's final portion is common in tapering studies 

(TÉO et al., 2013), and in other cases, errors may be accentuated at the base of the stems, as highlighted by Môra 

et al. (2014). 

One of the advantages of ANNs is the use of many explanatory variables, providing to the training process 

greater agility and accuracy of estimates, thus eliminating the need for data layering. In this sense, Schikowski et 

al. (2015) studied the application of artificial neural networks for eucalyptus tapering and found satisfactory 

results, recommending its use with different network configurations, number of neurons, activation functions and 

variable parameters. 

The accuracy of MEM observed in this study to predict the stem's shape has already been proven and 

reported by researchers who studied the shape of the stem with the application of random effects, among others, it 

is cited Cao and Wang, 2011.  

Another important factor of MEM and ANN is the possibility of grouping data from different forest 

conditions (spacing, genetic material, site, diametric class, and age) and performing the adjustment procedure with 

a single database, reducing, then, the number of adjustments with time and accuracy gains; consequently, this 

reflects in the forest inventory costs. Additionally, these techniques allow to work with a set of data that do not 

meet some of the assumptions of the regression, such as: independence between observations, random, normal and 

identical distribution of the residuals, with zero mean and constant variance (LAPPI, 1991; SANQUETTA et al., 

2015). 

 In turn, Cerqueira et al. (2017) evaluated the influence of spacing and planting arrangement on the 

eucalyptus tree shape and concluded that they influence in a significant way the shape of the tree stem and a single 

equation should not be adjusted to predict the tapering for global data that contemplate different arrangements in 

the iCLF system. 
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Thus, the importance of studies with the application of mixed models and neural networks to predict the 

shape of the trees in order to optimize the wood assortments in iCLF is noteworthy. Another factor of great 

relevance is the possibility of reducing the number of sample trees for adjustments, since, according to Dorado et 

al. (2006), the use of the theory of mixed models makes it possible to reduce the sampling intensity required to fit 

models with adequate precision. Successively, Binoti et al. (2013) evaluated the reduction of costs in the forest 

inventory activity of eucalyptus stands and concluded that it is possible to reduce the number of measured heights 

without loss of precision in ANN estimates. 

The reduction of the sampling intensity is extremely important for the forest measurement, especially 

when working with integrated systems of production, considering that they have a smaller amount of trees when 

compared to the conventional systems of production. Therefore, mixed effects modeling and artificial neural 

networks are important tools for estimating the sharpness and, consequently, the wood assortment of the trees, and 

can be used to support the forest management of eucalyptus in the iCLF system. 

 

CONCLUSION 

 

• The modeling of mixed effects and artificial neural networks are efficient and recommended for estimation of 

eucalyptus tapering in a Crop-Livestock-Forestry integration system. 

• Both evaluated techniques present accurate and similar results for estimating the diameters along the stem of 

eucalyptus trees, with a slight superiority of the artificial neural network. 
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