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Resumo 

Qualidade do carvão vegetal de Eucalyptus urograndis produzido na região sul do Tocantins.O objetivo do 

trabalho foi determinar a qualidade do carvão vegetal do clone de Eucalyptus urophilla x Eucalyptus grandis 

definindo a densidade básica e retratibilidade da madeira, densidade aparente, índice de quebra, rendimento do 

carvão vegetal, rendimento em gases condensáveis e não condensáveis, AQI e poder calorífico, comparando os 

resultados de diferentes posições do tronco e em duas diferentes Rampas de carbonização, Rampa 1 (M1) com 

taxa de aquecimento de 1,25 ºC/min, temperatura final de 450ºC e tempo total de 6 horas, e Rampa 2 (M2) com 

taxa de aquecimento de 1,19 ºC/min, temperatura final de 500ºC e tempo total de 7 horas. As seis árvores 

avaliadas foram provenientes de um plantio clonal de seis anos de idade localizado no município de Gurupi, 

sul do estado do Tocantins.  Os corpos de prova para as caracterizações foram confeccionados a partir de discos 

de madeira retirados das três posições do tronco (base, DAP, topo). A madeira de Eucalyptus urograndis 

apresentou densidade básica considerada média (0,47 g/cm³) e boa estabilidade dimensional. O carvão 

apresentou rendimento dentro do esperado, alto poder calorífico, influenciado pela temperatura final das 

Rampas de carbonização, alto teor de carbono fixo, teor de cinzas aceitáveis, além de baixo índice de quebra. 

Os resultados foram satisfatórios e identificaram a espécie como uma boa fonte energética. 

Palavras-chave: retratibilidade, densidade básica da madeira, características energéticas, carvão vegetal. 

 

Abstract 

The objective of this work was to determine the quality of the Eucalyptus urophilla x Eucalyptus grandis clone 

charcoal, defining the basic density and wood retractability, apparent density, breaking index, charcoal yield, 

condensable and non-condensable gas yield, AQI and calorific values, comparing the results of different trunk 

positions and in two different heating ramps, ramp 1 (R1) with a heating rate of 1.25 ºC/min, final temperature 

of 450ºC and total of 6 hours, and ramp 2 (R2) with a heating rate of 1.19 ºC/min, final temperature of 500ºC 

and total time of 7 hours. The six evaluated trees were from a six-year-old cloned tree plantation located in the 

municipality of Gurupi, in the south of Tocantins state. The specimens for the characterizations were made 

from wooden discs removed from three trunk positions (base, DBH, top). The Eucalyptus urograndis wood 

presented basic density considered average (0.47 g/cm³) and good dimensional stability. The charcoal presented 

an expected yield and high calorific value influenced by the final temperature of the heating ramps, high fixed 

carbon content, acceptable ash content, as well as a low breaking rate. The results were satisfactory and 

identified the species as a good energy source. 

Keywords: Retractability, basic wood density, energetic characteristics, charcoal. 

 

 

INTRODUCTION 

 

Wood is used for a variety of purposes, including energy uses. Data from the Food and Agriculture 

Organization (FAO) of the United Nations (2017) point to wood as the most important source of renewable energy, 

accounting for about 6% of the global supply of primary energy. Biomass in Brazil is largely made up of wood 

and when energy production is evaluated, it can be said that its use is divided into charcoal production 

(carbonization) and direct consumption of firewood (combustion) (Vale et al., 2002). 

Charcoal is only a fraction of the products that can be obtained in the carbonization process. If appropriate 

collection systems are used, condensable and non-condensable gases can be obtained. Pyroligneous liquor, which 

is a condensable gas, can be used for energy as well as for several different purposes such as fertilizer, disinfectant, 

sterilizer, and as a food additive, among others. 

Brazil is the largest producer and consumer of charcoal globally, and the only country to produce it 

commercially on a large scale. The charcoal consumer market is basically made up of the pig iron and ferroalloy 
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industries (82% of the coal produced). The use of charcoal has advantages over coke as a reducing agent in the 

steel industry, for example lower ash, lower sulfur and phosphorus, and is more reactive. Moreover, and especially 

being more environmentally friendly because it is renewable and less polluting (OLIVEIRA et al., 2010). 

Most energy forests plantations consist of the Eucalyptus genus, with characteristics such as rapid growth 

and considerable wood density, which guarantee easily renewable and good quality charcoal. The most used 

species in Brazil for these purposes are E. grandis, E. saligna, E. camaldulensis and E. urophylla, as well as their 

hybrids (SANTOS et al., 2010). E. urograndis is a hybrid developed by crossbreeding E. urophylla and E. grandis. 

The first Eucalyptus plantations in Tocantins state appeared in the year 1990 and its main purpose was 

for farm sustainability. The region had an area of 13,900 hectares planted with eucalyptus until 2006, while 

plantations had an area of 109,000 hectares in 2012 (ABRAF, 2013). The main purpose of these plantations at the 

beginning was to supply the demand for wood for pulp production, mainly in Maranhão state, but as this demand 

was not fulfilled, the wood was directed to producing charcoal for use in steel industries in Tocantins, Goiás and 

Minas Gerais states. 

The growth of this type of plantation in this region can be explained by the concentration of plantations 

in the south and southeast of Brazil, which caused the price of land to inflate, encouraging producers to migrate to 

the northern region; in addition, the characteristics of this region are favorable for good forest development, and 

despite the particularities such as high temperature and prolonged drought, some species are able to adapt and 

produce satisfactory results. 

In this context, the objective of this work was to evaluate the quality of Eucalyptus urograndis charcoal 

aiming at energy production in the southern region of Tocantins state. 

 

MATERIAL AND METHODS 

 
The material for this study was obtained from six six-year-old trees in an experimental Eucalyptus 

urophilla x Eucalyptus grandis plantation from the Federal University of Tocantins, in Gurupi - TO University 

Campus, located in the south of the state, at 11º74'S and 49º04'W, at 280 meters of altitude. The study was 

conducted at the Forest Products Technology and Utilization laboratory at the Federal University of Tocantins. 

Short logs were cut to 50 cm length at three trunk positions (Base, Diameter at Breast High, Top) of the 

felled trees for research. They were sent to a carpentry industry to manufacture specimens to determine shrinkage, 

basic wood density and to produce charcoal. All specimens were cut to approximately 5.0 x 2.5 x 2.5 cm (length 

x width x thickness) and identified with their original position. 

 

Wood Characterization 

Retractability 

Wood retractability was obtained by selecting 10 specimens from each position (Base, DBH and top) with 

well-oriented radial, tangential and transverse planes. They were immersed in water until complete saturation, and 

after each of which was measured with an analog caliper to determine the saturated dimensions of each plane. 

They were subsequently put to dry at 0% humidity in a kiln at a temperature of 103 ± 2 ºC to constant mass, which 

were then measured after drying to determine the dry dimensions. The following were then calculated from the 

resulting data: radial, tangential, longitudinal, volumetric shrinkage and anisotropic factor based on COPANT 462 

(1972). 

 

Basic Density 

Basic wood density was determined by the hydrostatic balance method for 20 specimens from each trunk 

position (Base, DBH and Top), totaling 60 specimens, and calculated based on ASTM D-2395 (ASTM, 2005).  

 

Charcoal Production and Energy Characterization 

For the charcoal production, the same 20 specimens obtained from each trunk position were used to 

determine the basic density, totaling 60 specimens. The specimens were charred in a muffle kiln adapted to capture 

pyroligneous liquor and programmed with two different carbonization increases (Table 1). Two ramped increases 

were then performed for each trunk position (base, DBH and top) using 10 specimens for each Ramp, totaling six 

pyrolysis groups. The first Ramp had a heating rate of 1.25°C/min, final temperature of 450°C and total time of 6 

hours. The second Ramp had a heating rate of 1.19°C/min, final temperature of 500°C and total time of 7 hours. 

The specimens were brought to a dry chamber at 103 ± 2°C for 24 hours prior to carbonization to remove moisture 

from the wood. 
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Table 1. Temperature and carbonization time as a function of the carbonization run. 

Tabela 1. Temperatura e tempo de carbonização em função da Rampa de carbonização. 

Ramp 
Temperature °C Heating Rate 

°C/min  

Total 

150 200 250 350 450 500 Time 

1 1 hour 1 hour 1h30 1h30 1 hour -  1.25 6 hours 

2 1 hour 1 hour 1h30 1h30 1 hour 1hour 1.19 7  hours 

 

The following were calculated after carbonization: charcoal yield, condensable and non-condensable 

gases, bulk density, gravimetric yield, breaking index, immediate chemical analysis (ICA) and calorific value. 

 

Charcoal Yield, Condensable and Non-Condensable Gases 

The adaptation to collect pyroligneous liquor made it possible to define the yield in charcoal, 

condensable and non-condensable gases. The reactor was first weighed with the wood prior to carbonization, as 

well as all parts of the pyrolysis system. After carbonization, all parts of the system containing liquor as well as 

the reactor with charcoal were weighed again to determine the yields (Equations 1, 2 and 3). 

 

𝑌𝑐 =  
𝑀𝑐

𝑀𝑤
∗ 100                                                                                                                             (1) 

 

Where: Yc = charcoal yield (%); Mc = mass of charcoal (g); Mw = wood mass (g). 

 

𝑌𝑐𝑔 =  
𝑀𝑙

𝑃𝑚𝑀𝑤
∗ 100                                                                                                                        (2) 

 

Where: Ycg = condensable gas yield (%); Ml = mass of pyroligneous liquor (g); Mw = wood mass(g). 

 

𝑌𝑛𝑐𝑔 = 100 − 𝑌𝑐 − 𝑌𝑐𝑔                                                                                                                        (3) 

 

Where: Yncg = non-condensable gas yield (%); Yc = charcoal yield (%); Ycg = condensable gas yield (%). 

 

Apparently density 

Charcoal apparent density was defined as the ratio between the mass of charcoal weighed on an analytical 

scale and its volume, which was calculated by measuring its dimensions (length, width and thickness) with an 

analog caliper, as presented in Equations 4 and 5. 

 

𝐷𝑎𝑝 =  
𝑀

𝑉
                                                                                                                                      (4) 

 

Where: Dap = apparent density (g/cm³); M = mass of charcoal (g); V = volume of charcoal (cm³). 

 

𝑉 =  𝑙 ∗ 𝑤 ∗ 𝑡                                                                                                                               (5) 

 

Where: V = volume of charcoal (cm³); l = length, w = width and t = thickness (cm). 

 

Breaking Index 

The coal strength test was determined according to its breaking index based on ABNT NBR 7416/84 

(ABNT, 1984), in which each charcoal was subjected to a free fall of 1830 mm and this fall test was repeated up 

to 3 times. The charcoal was weighed before and after testing, and the largest fragment resulting after the fall was 

weighed. The breaking index was determined using Equation 6. 

 

𝐵𝑖 = (1 − 
𝑓

𝐹 
) ∗ 100                                                                                                                                            (6) 

 

Where: Bi = Breaking Index (%); f = largest fragment after testing (g); F = coal sample before testing (g). 
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Immediate Chemical Analysis (ICA) 

An analysis of the immediate chemical composition of the charcoal was performed based on ASTM D 

1762/84 (ASTM, 2007). The produced charcoals were ground separately producing 10 samples sorted by position 

origin and carbonization Ramp, totaling 60 samples. They were placed in porcelain crucibles, weighing the moist 

samples first, then placed in a drying kiln at approximately 100°C for 30 min. to obtain the dry mass. Finally, the 

crucibles with the charcoal samples were sent to a muffle kiln, where they remained first for 7 minutes at 900°C 

to determine the volatile materials, and then for another 7 hours at 700°C to determine the fixed carbon and ash 

contents. 

 

Calorific Power 

The calorific power of charcoal was determined based on the methodology of Do Vale et al. (2002), 

according to Equation 7: 

 

𝐶𝑃 = 4934,43 + 33,27 ∗ 𝐹𝐶                                                                                                                                 (7) 

 

Where: CP = calorific power (kcal.kg-1) and FC = fixed carbon percentage (%) 

 

Statistical analysis 

The experimental design was completely randomized with a 3x2 factorial arrangement considering the 

origin position factors of the samples and the two different carbonization Ramps. Statistical analysis was 

performed by the Assistat and Excel programs. The Tukey test was used for immediate chemical analysis and 

calorific value wood quality parameters. The Kruskal-Wallis test was used for other parameters. 

 

RESULTS 

 

Wood Characterization 

Table 2 presents the analysis of variance for the physical properties of wood parameters. 

 

Table 2. ANOVA of the basic density and retractability of E. urograndis wood. 

Tabela 2. ANOVA da densidade básica e retratibilidade da madeira de E. urograndis. 

Parameters F 

Basic wood density (g/cm³) 33.76 ** 

Tangential shrinkage (%) 9.19 ** 

Radial shrinkage (%) 0.04 ns 

Longitudinal shrinkage (%) 0.21 ns 

Volumetric shrinkage (%) 3.46 * 

Anisotropic factor 1.82 ns 

* significant at 5% probability level (.01 =<p <.05); ** significant at 1% probability level (p <.01); ns - not significant (p>= .05)         

   

In Table 2, the analysis of variance of basic density and tangential shrinkage were significant at 1% 

probability level, while the volumetric shrinkage was significant at a 5% probability level. Radial and longitudinal 

retraction and anisotropic factor were not significant. 

Table 3 shows the average values for the physical properties of wood parameters. 
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Table 3. Basic density and retractability of E. urograndis wood. 

Tabela 3. Médias de densidade básica e retratibilidade da madeira de E. urograndis. 

Parameters Positions  

Basic Wood Density (g/cm³) 

Base 
0.50 a 

(0.01 ; 2.86) 

DBH 
0.46 b 

(0.01 ; 2.47) 

Top 
0.44 c 

(0.02 ; 3.73) 

Tangential shrinkage (%) 

Base 
7.13 a 

(0.75 ; 10.58) 

DBH 
6.31 b 

(0.51 ; 8.04) 

Top 
6.12 b 

(0.33 ; 5.37) 

Radial retraction (%) 

Base 
4.35 a 

(0.80 ; 18.50) 

DBH 
4.27 a 

(0.67 ; 15.66) 

Top 
4.28 a 

(0.41 ; 9.59) 

Longitudinal shrinkage (%) 

Base 0.16 a 
 (0.21 ; 131.15) 

DBH 0.23 a 
 (0.31 ; 137.91) 

Top 0.18 a 

  (0.11 ; 63.65) 

Volumetric shrinkage (%) 

Base 11.64 a 
 (1.21 ; 10.38) 

DBH 10.81 ab 
 (0.93 ; 8.61) 

Top 10.58 b 

  (0.59 ; 5.53) 

Anisotropic factor 

Base 1.66 a 
 (0.35 ; 21.12) 

DBH 1.53 a 
 (0.24 ; 15.75) 

Top 1.44 a 

  (0.15 ; 10.47) 
The average followed by the same letter in the column do not differ statistically from each other by the Tukey test (5%). The values in 
parentheses respectively correspond to standard deviation and coefficient of variation (%). 

 

Characterization of Charcoal 

Table 4 presents the average yield values in charcoal, condensable and non-condensable gases of E. 

urograndis wood. 

Table 4. Averages of charcoal yield in condensable and non-condensable gases of E. urograndis wood. 

Tabela 4. Médias de rendimento em carvão, em gases condensáveis e não condensáveis de E. urograndis. 

  Carbonization Rises 

Parameters Positions 450°C 500°C 

Charcoal yield 

(%) 

Base 33.33 32.93 

DBH 31.17 31.17 

Top 30.49 30.12 

Condensable gas 

yield (%) 

Base 47.62 44.51 

DBH 45.45 46.10 

Top 50.00 48.19 

Non-condensable 

gas yield (%) 

Base 19.05 22.56 

DBH 23.38 22.73 

Top 19.51 21.69 
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Table 5 presents average values of apparent density and breaking index of E. urograndis charcoal. 

 

Table 5. Average values of apparent density, gravimetric yield and breaking rate of E. urograndis charcoal. 

Tabela 5. Médias de densidade aparente, rendimento gravimétrico e índice de quebra do carvão de E. urograndis. 

  Carbonization Ramps 

Parameters Positions 450°C 500°C 

Apparent density 

(g/cm³) 

Base 0.35 B 0.35 B 
 (0.02 ; 5.47) (0.02 ; 5.59) 

DBH 0.26 AB 0.23 A 
 (0.02 ; 6.61) (0.02 ; 7.18) 

Top 0.23 A 0.26 AB 

  (0.04 ; 15.84) (0.01 ; 4.98) 

Breaking index (%) 

Base 0.74 B 0.38 AB 
 (0.17 ; 22.42) (0.28 ; 73.55) 

DBH 0.19 A 0.15 A 
 (0.16 ; 83.70) (0.15 ; 99.05) 

Top 0.15 A 0.32 AB 

  (0.10 ; 66.15) (0.15 ; 47.17) 
The average rate followed by the same letter in the row and column do not differ statistically from each other by the Kruskal-Wallis test (5%). 
The values in parentheses correspond respectively to standard deviation and coefficient of variation (%). 

Table 6 presents the statistical analyzes of variance and significance of the ICA parameters and calorific 

power of E. urograndis charcoal between position interaction and carbonization ramp. 

Table 6. ANOVA of volatile materials, fixed carbon, ash and calorific value of E. urograndis charcoal. 

Tabela 6. ANOVA dos materiais voláteis, carbono fixo, cinzas e poder calorífico do carvão de E. urograndis. 

Parameters Positions Ramps P x M 

Volatile Materials (%) ns ** ** 

Fixed Carbon (%) * ** ** 

Ashes (%) ** ** ** 

Calorific power (%) * ** ** 
** significant at 1% probability level; * significant at 5% probability level; ns - not significant 

The analysis of variance of the Immediate Chemical Analysis in Table 6 shows no significant difference 

for volatile materials between positions, and significant differences at the 1% probability level between the two 

different Carbonization Ramps and between the Ramp-Position interaction. There was a significant difference at 

5% probability between positions for fixed carbon, and significant differences at 1% probability level between the 

two different Carbonization Ramps and between the Ramp-position interaction. There was also a significant 

difference at the 1% probability level for ashes between positions, Ramps and Ramp-Position interaction. Lastly, 

the calorific power presented significant positions at 5% probability, the Ramp and a significant Ramp-position 

interaction at 1% probability. 

Table 7 shows the average test values for the parameters of the immediate chemical analysis and the 

calorific power of E. urograndis charcoal. 

Table 7. Average values of volatile materials, fixed carbon, ash and calorific power of E. urograndis charcoal. 

Tabele7. Averages of volatile materials, fixed carbon, ash and calorific value of E. urograndis charcoal. 

  Carbonization Ramps 

Parameters Positions 450°C 500°C 

Volatile Materials 

(%) 

Base 25.47 abA 21.24 aB 
 (1.50 ; 5.88) (0.98 ; 4.61) 

DBH 26.10 aA 18.60 bB 
 (1.72 ; 6.58) (1.00 ; 5.38) 

Top 24.52 bA 21.74 aB 

  (1.11 ; 4.54) (1.56 ; 7.17) 

Fixed Carbon (%) 

Base 73.87 abB 78.17 bA 
 (1.49 ; 2.01) (0.98 ; 1.26) 

DBH 73.46 bB 80.96 aA 
 (1.72 ; 2.35) (1.00 ; 1.23) 
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Top 75.02 aB 77.81 bA 

  (1.11 ; 1.48) (1.55 ; 1.99) 

Ashes (%) 

Base 0.66 aA 0.59 aB 
 (0.04 ; 6.14) (0.04 ; 6.35) 

DBH 0.44 bA 0.43 bA 
 (0.02 ; 4.21) (0.02 ; 5.65) 

Top 0.46 bA 0.45 bA 

  (0.02 ; 4.08) (0.03 ; 6.40) 

Calorific power 

(%) 

Base 7392.09 abB 7535.16 bA 
 (49.50 ; 0.67) (32.66 ; 0.43) 

DBH 7378.57 bB 7628.13 aA 
 (57.32 ; 0.78) (33.21 ; 0.44) 

Top 7430.2 aB 7523.28 bA 

  (36.85 ; 0.50) (51.54 ; 0.69) 
The average followed by the same uppercase letter in the row and the same lowercase letter in the column do not differ statistically from each 

other by the Tukey test (5%). The values in parentheses respectively correspond to standard deviation and coefficient of variation (%). 

DISCUSSION 

Wood Characterization 
Table 3 shows that the average for the basic wood density parameter decreased in the base-top direction due to 

the fact that the fibers have a thicker cell wall at the base and are less thick at the top for fact that the top has more 

youthful wood and the base is adult wood. The average result from the base was 0.50 g/cm³ and from the top 0.44 g/cm³, 

so all positions presented significant differences at the 5% probability level. The average values of E. urograndis wood 

sample density from this study were similar but lower than those found by Gonçalez et al. (2014) of 0.51 g/cm³ for 8-

year-old E. urograndis, and of 0.54 g/cm³ by Santos et al. (2011) for Eucalyptus clones at seven years of age.  

Basic wood density is considered an index for wood quality assessment, being one of the most relevant 

indicators to be evaluated among the various physical properties, as it can affect the others, especially the energy 

properties since wood density directly interferes with the charcoal density, its yield and quality. According to Coradin 

et al. (2010) and Silveira et al. (2013), woods are classified as light or low density (<0.550 g/cm3), medium density 

(between 0.550 and 0.720 g/cm3) and heavy or high density (> 0.730 g/cm3). The higher the density, the more fixed 

carbon, the higher the calorific value, and the greater the energy potential. E. urograndis wood presented average  basic 

density values which are considered low (0.46 g/cm³), mainly in the top position, which classifies it as low density wood. 

This factor may be linked to the tree age and environmental conditions.  

Regarding the retractability (presented in Table 2), there was also a decrease of the average value in the base-

top direction for the tangential shrinkage parameter, with a maximum average of 7.13% and a minimum of 6.12%, in 

which the position from the base differed statistically from the others at the 5% probability level. The averages were 

lower than that found by Batista et al. (2010), which was 9.25% for E. grandis. 

There was a small variation in the averages for the radial shrinkage and longitudinal shrinkage parameters 

(Table 3), with the positions being statistically equal. The radial retraction average was 4.35% maximum and 4.27% 

minimum, which is close to that found by Batista et al. (2010) which was 4.60% for E. grandis. The average for 

longitudinal retraction was insignificant. 

There was a decrease in the average for the volumetric shrinkage parameter in the base-top direction, with a 

maximum average of 11.64% and a minimum of 10.58%, thus resulting in a significant difference between the base and 

top at the 5% probability level, and meaning that the wood from the top has greater dimensional stability. The average 

volumetric retraction rate found by Batista et al. (2010) for E. grandis was higher, 14.10%, which means that the E. 

urograndis species studied in the present work has lower retractability, and therefore greater dimensional stability. 

The anisotropic factor (still in Table 3), showed little variability of averages, where there was no statistical 

difference between one position from another. The average values of this factor ranged from 1.44 to 1.66, consequently 

lower than the average found by Batista et al. (2010) for E. grandis which was 2.05. The anisotropic factor is a paramount 

parameter for assessing the dimensional stability of wood. Following classification criteria, the wood of the species in 

this study is classified as normal at the base and excellent at the top for its dimensional stability. 

Charcoal Characterization 

Table 4 compares the charcoal yield in condensable and non-condensable gases between the different trunk 

positions and the different carbonization Ramps, in which the highest charcoal yield was based on the 450°C 

carbonization Ramp with a value of 33.33%, and the smallest was from the top in the 500°C Carbonization Ramp with 

a value of 30.12%. These values are similar to those of Oliveira et al. (2010), in which the E. pellita species for the same 

450°C Ramp obtained 32.11% in charcoal yield, and a value of 31.09% for the same 500°C Carbonization Ramp. Vieira 

et al. (2013) found an average of 34% for Eucalyptus micocorys at the final temperature of 500°C. Soares et al. (2015) 

produced charcoal with yields of 33.06% with Eucalyptus at seven years of age at the final temperature of 450°C. It can 

be observed that higher temperature carbonization ramps tend to produce lower charcoal yields. Vilas Boas (2010) 
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reports that this occurs due to the decomposition of the chemical constituents of wood, causing mass loss and 

consequently a loss in charcoal yield. It was also observed that the base tends to have higher yield because it has higher 

density compared to the top. Higher densities result in higher charcoal yield. 

The yield for condensable gases (Table 4) was higher at the top for the 450°C Carbonization Ramp with a value 

of 50.00% and lower at the base for the 500°C Carbonization Ramp with a value of 44.51%. These values are slightly 

lower than those of Oliveira et al. (2010), in which the E. pellita species obtained 58.95% in condensable gas yield for 

the same 450°C Ramp, and 58.98% for the same 500°C Ramp. In a study with the Corymbia citriodora species and 

species of the Eucalyptus genus, Zanuncio et al. (2015) showed a lower average value of 31.05% for the Corymbia 

citriodora species at the final temperature of 450°C. The carbonization ramps in the present work significantly interfered 

in the pyroligneous liquor yield, with the lowest temperature increase being the most efficient for this parameter. 

The non-condensable gas yield (Table 4) was higher in the DBH for the 450°C Carbonization Ramp with a 

value of 23.38%, and lower for the same Carbonization Ramp with a value of 19.05%. These values are much higher 

than those found by Oliveira et al. (2010), in which the E. pellita species obtained a non-condensable gas yield of 8.93% 

for the same Ramp of 450°C. Assis et al. (2012) studied the quality and yield of charcoal from a hybrid Eucalyptus 

grandis x Eucalyptus urophylla crossover clone and found higher average values for non-condensable gases of 28.89% 

at the final temperature of 450°C. Non-condensable gases as well as condensable gases have achieved high yields, and 

these can be harnessed in the energy industry as a source of energy through the dry distillation process that can be 

implanted from retorts rather than conventional ovens. The present work presented considerable yields, and thus the E. 

urograndis species can be considered as a good energy source. 

The apparent density (Table 5) decreased in the base-top direction, as seen in the basic density, as they are 

similar parameters. The density of charcoal and the density of its source wood are correlated, and therefore there is a 

correlation between them, which indicates that the type of wood is determinant in the final density of charcoal. The 

highest apparent density was from the base with a value of 0.35 g/cm³ in the two different carbonization ramps. The 

lowest apparent density was 0.23 g/cm³, with this same value at the top and DBH of the 450°C and 500°C carbonization 

ramps, respectively. The average apparent density values of E. urograndis in the present study were similar to those 

found by Santos et al. (2011), of 0.27 to 0.35 g/cm³ in a study conducted with Eucalyptus clones by Oliveira et al. (2010), 

and in a study with Eucalyptus pellita F. Muell in which the authors found averages ranging from 0.353 to 0.368g/cm³. 

The base and top had a significant statistical difference in the carbonization Ramp of 450°C. In contrast, the 

positions which had a significant difference were in the base and in DBH in the carbonization Ramp of 500°C. In general, 

the base stood out with higher densities, with this being an important feature for the load composition in the kiln, as the 

higher the charcoal density, the smaller the volume occupied by it and the higher the yield. 

The breaking index (Table 5) also tended to be higher at the base, coinciding with the density and retractability 

which were higher at the base, and can be explained by the fact that the denser the specimen, the greater the impact on 

the fall which influenced the breaking, in addition to greater retractability in the base, meaning lower dimensional 

stability, thus influencing the index by possible cracks in the carbonization process of charcoal, which decreases its 

resistance. However, the species of the present work generally presented significantly low data average, meaning that 

the species is resistant to breakage. The highest value was 0.74% of base in the 450°C Carbonization Ramp and the 

lowest was 0.15% of the top and DBH for the 450°C and 500°C Carbonization Ramps, respectively. The base had a 

statistically significant difference from the other positions in the Carbonization Ramp of 450°C, while there were no 

significant differences in the Carbonization Ramp of 500°C. 

Table 7 presents the ICA and calorific value data. The highest values for volatile materials were for the 450°C 

Carbonization Ramp with the largest DBH value (26.10%), and the lowest values of the 500°C Ramp  was the lowest 

DBH value (18.60%), constituting higher values than those found by Oliveira et al. (2010) for the E. pellita species of 

12.04% and 11.15% in the 450°C and 500°C Ramps, respectively. In studying Eucalyptus clones, Reis et al. (2013) also 

found average values  close to this study of 26.04% for the final temperature of 450°C. In their study with Eucalyptus 

clones, Chaves et al. (2013) found close averages ranging from 24.63% to 19.59%. Furthermore, in a study with 

Eucalyptus benthamii, Nones et al. (2015) observed a high average content of 30.41%. Volatile materials are responsible 

for ignition of the material, and it is interesting to have a value less or equal to 25.00%, which constitutes the value 

resulting from the data of resolution SAA - 40 (2015), and defines values for fixed carbon and ash. The values of the 

present work for the volatile materials parameter were approximately 25.00%, which is ideal. The carbonization ramps 

were statistically different from each other, the positions were statistically different between DBH and the top in the 

450°C ramp, while DBH in the 500°C ramp was the position that differed from the others.  

The highest values for fixed carbon were for the 500°C Carbonization Ramp, with the largest being the DBH 

value (80.96%), and the lowest values of the 450°C Ramp being the lowest DBH value (73.46%). These values are lower 

than those found by Oliveira et al. (2010) for the E. pellita species of 86.10% and 86.66% in the 450°C and 500°C 

Ramps, respectively; and by Reis et al. (2013), who found average values between 71.74% and 76.93% for species of 

the Eucalyptus genus, with the values being considered close to those observed in this study for three species of the 

Eucalyptus genus. Fixed carbon is a parameter of great importance for the calorific power of charcoal, as they have 

direct proportionality. Resolution SAA - 40 (2015) recommends approximately 73.00% fixed carbon for good quality 

charcoal. The values of the present work were approximate, thus defining the E. urograndis species as being optimal for 

energy potential. The carbonization ramps were statistically different from each other, the positions were statistically 
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different between DBH and top in the 450°C ramp, and DBH in the 500°C ramp was the position that differed from the 

others. Since the volatile material and fixed carbon levels are inversely proportional, the lowest value for fixed carbon 

was observed in the treatment with the highest value for volatile material, and vice versa. 

The highest value for ash content was 0.66% for the base at the 450°C Carbonization Ramp, while the lowest 

value was 0.43% for the DBH at the 500°C Ramp. These values are lower than those found in the study by Oliveira et 

al. (2010) for the E. pellita species, which were 1.86% and 2.19% in the 450°C and 500°C Ramps, respectively. In a 

study with Eucalyptus hybrids of different ages, Soares et al. (2015) found ash content at five years of age of 0.87%, 

being higher than the values of the present study. Ashes are not useful for energy use, as they have no purpose in Energy 

production; they constitute a waste which can cause corrosion and require greater maintenance in boilers when in large 

quantities, so the lower the ash content the better for the industry, as this means less waste and less maintenance costs. 

Resolution SAA - 40 (2015) recommends a value of less than 1.50% of ashes, and the ash content of the present work 

was much lower than recommended, thus characterizing the E. urograndis species as a great alternative for charcoal 

production due to generating little waste in the energy industry. The carbonization ramps only had a significant difference 

for the base position, and the base differed significantly from the other positions. 

The calorific value (still in Table 7) presented higher values in the Carbonization Ramp of 500°C, and the 

highest value was 7628.13 kcal/kg, but it was lower than that found in the same 500°C Ramp for E. pellita in the work 

of Oliveira et al. (2010), which was 8237.00 kcal/kg. The DBH position in this Ramp presented significant difference 

from the other positions in the present study. The carbonization Ramp of 450°C presented the lowest values, with the 

lowest being 7378.57 kcal/kg, which is lower than that found in the same Ramp of 450°C for E. pellita in of 8309.00 

kcal/kg the study by Oliveira et al. (2010). In a study conducted with the Corymbia citriodora species and species of the 

Eucalyptus genus, Zanuncio et al. (2015) found a value of 7545.41 kcal/kg at the final temperature of 450°C, close to 

the values found in this study. the DBH and top positions in this Ramp presented a statistically significant difference. 

All positions had significant difference in the comparison between the two different Carbonization Ramps, and therefore 

the Carbonization Ramp significantly interferes in the calorific value because it directly interferes with the fixed carbon 

content. 

The calorific power values can be explained due to the existence of a positive correlation between the calorific 

value and the fixed carbon content, as evidenced by the calculated R value (1.00), which shows a strong positive 

correlation between the two parameters. 

 

CONCLUSIONS 

According to what was found, it is concluded that: 

• The retractibility of E. urograndis wood showed values which characterize the wood as more stable when compared 

to other Eucalyptus species. For energy purposes, this is a good feature to look into in order to ensure less cracked 

charcoal and higher strength. 

• The basic wood density was considered low (<0.550g/cm³); 

• The apparent density of E. urograndis charcoal was in compliance with the literature for the Eucalyptus genus; 

• The charcoal yield was higher in the base and had no interference from the carbonization ramps. It presented high 

values compared to other works, and high charcoal yield is synonymous with high production. 

• The yields for condensable and non-condensable gases were significant, since the condensable gases showed a high 

yield and can be used for various purposes as fertilizer, disinfectant, sterilizer, as a food additive, and for energy 

purposes. 

• The breaking index of charcoal was low, thus being characterized as resistant to breakage. 

• The fixed carbon content was inversely proportional to the volatile content, and were generally considered ideal 

values for high quality charcoal. The ash content was low, which is interesting as ash is not useful for energy 

purposes. 

• The superior calorific value was within the stated standards for good quality charcoal. 

• Overall, the results were within those recommended by resolution SAA - 40 (2015), thus characterizing Eucalyptus 

urograndis as a good option for energy production in the state of Tocantins. 
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