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Abstract:  

Geocentric translation model (GTM) in recent times has not gained much popularity in 

coordinate transformation research due to its attainable accuracy. Accurate transformation of 

coordinate is a major goal and essential procedure for the solution of a number of important 

geodetic problems. Therefore, motivated by the successful application of Artificial Intelligence 

techniques in geodesy, this study developed, tested and compared a novel technique capable of 

improving the accuracy of GTM. First, GTM based on official parameters (OP) and new 

parameters determined using the arithmetic mean (AM) were applied to transform coordinate 

from global WGS84 datum to local Accra datum. On the basis of the results, the new parameters 

(AM) attained a maximum horizontal position error of 1.99 m compared to the 2.75 m attained 

by OP. In line with this, artificial neural network technology of backpropagation neural network 

(BPNN), radial basis function neural network (RBFNN) and generalized regression neural 

network (GRNN) were then used to compensate for the GTM generated errors based on AM 

parameters to obtain a new coordinate transformation model. The new implemented models 

offered significant improvement in the horizontal position error from 1.99 m to 0.93 m.  

Keywords: Geocentric translation model, Backpropagation neural network, Radial basis 

function neural network, Generalized regression neural network, Coordinate transformation. 

Resumo:  

O modelo de translação geocêntrica (GTM) atualmente não tem sido muito utilizado nas 

pesquisas de transformação de coordenadas devido a sua exatidão. Uma transformação acurada 
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de coordenadas é um procedimento essencial na maioria dos problemas geodésicos. Entretanto, 

motivado pelo sucesso na aplicação de técnicas de Inteligência Artificial na Geodésia, este 

estudo testou e comparou uma nova técnica capaz de aumentar a exatidão do modelo GTM. 

Inicialmente, o GTM é definido com parâmetros oficiais (OP) e novos parâmetros determinados 

usando a média aritmética (AM) foram aplicados na transformação de coordenadas do datum 

global WGS84 para o datum local Accra. Com base nesses resultados, os novos parâmetros da 

média aritmética (AM) alcançaram um erro posicional horizontal máximo de 1.99m, em 

comparação com 2.75m alcançado pelos parâmetros oficiais (OP). De maneira similar, a 

tecnologia de redes neurais artificiais dos modelos BPNN (BackPropagation Neural Network), 

RBFNN (Radial Basis Function Neural Network) e GRNN (Generalized Regression Neural 

Network) foram então utilizadas para compensar os erros do modelo GTM com os parâmetros 

baseados na média aritmética (AM) para se obter um novo modelo de transformação de 

coordenadas. Os novos modelos implementados apresentaram uma melhora significativa no erro 

posicional horizontal de 1.99m para 0.93m. 

Palavras-chave: Modelo de translação geocêntrica, modelo neural BPNN, modelo neural 

RBFNN, modelo neural GRNN, Transformação de coordenadas. 

 

1. Introduction 

 

Over the past years, the development of numerical techniques that can transform coordinates 

between global to local datums and vice versa or within the same reference system has 

increasingly become a major focus of the geodetic community. As an example, three dimension 

(3D) conformal models such as Bursa-Wolf, Molodensky-Badekas, Veis, 3D affine model have 

been developed and widely used in coordinate transformation (Rapp, 1993; Featherstone, 1997; 

Deakin, 1998, 2006; Andrei, 2006; Ayer and Fosu, 2008; Paláncz et al., 2010; Zeng, 2010; 

Dzidefo, 2011; Haasdyk and Janssen, 2011; Ziggah et al., 2013; Solomon, 2013; Lehman, 2014). 

Other methods like 2D conformal model, 2D affine model, multiple regression, Abridged 

Molodensky, Thomson-Krakiwsky, Vanicek and Wells and Hotine model have also been applied 

in coordinate transformation (Thomson, 1976; Abd-Elmotaal and Ei-Tokhey, 1997; Newsome 

and Harvey, 2003; Fraser and Yamakawa, 2004; Molnár and Timár, 2005; Başçiftçi et al., 2006; 

Karunaratne, 2007; Ayer and Tiennah, 2008; Dawod et al., 2010). 

Additionally, with the advancement in satellite positioning technology, several new procedures 

have been put forth to carry out coordinate transformation with the primary objective of 

improving transformation accuracy. In practice, the most common alternatives could be 

categorised into artificial intelligence technology (Zaletnyik, 2004; Lin and Wang, 2006; Tierra 

et al., 2008; Tierra et al., 2009; Gullu, 2010; Turgut, 2010; Gullu et al., 2011; Yilmaz and Gullu, 

2012; Mihalache, 2012; Tierra and Romero, 2014), partitioning methods (Lippus, 2004; 

Kheloufi, 2006), Ill-posed approach (Zeng, 2010; Zeng and Yi, 2010; Ge and Wu, 2012), least 

squares algorithms (Felus and Schaffrin, 2005; Acar et al., 2006a, 2006b; Rey-Jer and Hwa-Wei, 

2006; Akyilmaz, 2007; Janicka, 2011; Mahboub, 2012), quaternions approach (Shen et al., 2006; 

Jitka, 2011; Zeng and Yi, 2011), dynamic datum transformation approach (Soler, 1998; Soler 

and Marshall, 2003; Soler and Snay, 2003; Stanaway, 2008; Haasdyk and Janssen, 2011), 

Procrustes algorithm (Grafarend and Awange, 2003; Zeng, 2015) to mention but a few. It is 

important to note that coordinate transformation has been chiefly dominated by the above 

mentioned methods due to their achievable accuracy. 

One of the transformation models that has not gained popularity over the years in coordinate 

transformation research is the Geocentric Translation Model (GTM) developed by the then 
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Defence and Mapping Agency (DMA) now National Geospatial-Intelligence Agency (NGA), 

USA. This is due to the low transformation accuracy usually obtained by the GTM as compared 

to other coordinate transformation procedures. The low accuracy is mostly attributed to a defect 

in the GTM because it only applies the three-dimensional origin shift with no regard for rotations 

and scale changes between the reference systems (Featherstone, 1997). Moreover, the 

heterogeneous nature of the local geodetic network also contributes to the inability of the GTM 

to achieve higher transformation accuracy. This is because local geodetic networks are 

established through classical surveying techniques of triangulation, traverse, and astronomical 

observations (Andrei, 2006; Tierra et al., 2008). Hence, unwanted distortions are introduced into 

the local geodetic network (Vanicek and Steeves, 1996) which could not be more absorbed by 

the GTM. 

On the contrary, GTM coordinate transformation results could be applied in situations without 

high accuracy demand (Featherstone, 1997; Newsome and Harvey, 2003). For example, in field 

surveying works such as reconnaissance; in Geographic Information System (GIS) data 

collection for database generation; topographic mapping, farm boundary surveys and many 

others. Besides, it could be used to transform thematic type data such as vegetation, soil type, 

hydrology, environment, demography, health, economic and geology where the accuracy is not 

critical. Generally, the translation parameters used by the GTM are mainly obtained from 

Abridged Molodensky, Bursa-Wolf, and Molodensky-Badekas model (Featherstone, 1997; 

Newsome and Harvey, 2003). However, Featherstone, (1997) argued that GTM which solely 

depends on the translation parameters would produce inconsistent results due to different 

translation values obtained from the similarity models. Therefore, a good representation about 

the characteristics of the coordinates data will be based on the original shift determined using the 

arithmetic mean (AM) technique. 

This study applied the AM method to first determine the GTM translation parameters required in 

transforming coordinates between Ghana’s Accra datum based on War Office 1926 ellipsoid and 

World Geodetic System 1984 (WGS84) ellipsoid. Due to the attainable accuracy of the GTM, 

the residuals which remain after comparing transformed coordinates to the existing coordinates 

are mostly on a high level. Therefore, actuated by the effective use of artificial intelligence (AI) 

techniques in surveying and mapping, this study proposed a novel approach known as the 

Artificial Neural Network-Error Compensation Model (ANN-ECM). The ANN methods utilized 

in this study for the proposed model formulation include the backpropagation neural network 

(BPNN), radial basis function neural network (RBFNN) and generalized regression neural 

network (GRNN). These ANN-ECMs developed were tested for their efficiency in improving 

GTM performance. Also, the ANN-ECMs were compared with GTM transformed coordinates 

based on the arithmetic mean (AM) calculated parameters and the Official Parameters (OP) 

determined by the then DMA now NGA for use in Ghana.  

It is notable to state that the proposed novel approach was applied for the first time in Ghana’s 

geodetic reference network. The advantage of this novel approach is that, it uses the non-

linearity and function approximation capabilities of ANN to compensate the errors generated by 

the GTM thereby improving transformation performance. The results further proved that the 

proposed method is more efficient and better than using only the AM and OP in GTM 

application for coordinates transformation. Hence, this study opens up a new dimension in the 

application of GTM within the surveying and mapping industry. It also shows that with the 

proper implementation of ANN, it can serve as alternate procedure to improve GTM results. 
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2. Study Area and Data Source 

 

The study area is Ghana located in West Africa. It is bordered on the North by Burkina Faso, 

Ivory Coast to the West, Togo to the East and Gulf of Guinea to the South. Ghana uses a 

horizontal datum known as the Accra datum for its geodetic activities. The reference surface of 

the Accra datum is the War Office 1926 ellipsoid suggested by the British War Office, with 

semi-major axis a = 6378299.99899832 m, semi minor axis b = 6356751.68824042 m, flattening 

f = 1/296, and Gold Coast feet to meter conversion factor of 0.304799706846218 respectively 

(Ayer, 2008; Ayer and Fosu, 2008). For the estimation of planimetric coordinates the Transverse 

Mercator projection system is used (Mugnier, 2000; Poku-Gyamfi and Hein, 2006). It is 

important to note that, the coordinate system used to indicate positions of features on all survey 

maps in Ghana is the projected grid coordinates of Easting and Northing derived from the 

Transverse Mercator projection. 

With the advent of modern positioning technologies, the Ghana Survey and Mapping Division of 

Lands Commission, through the Land Administration Project (LAP) sponsored by the World 

Bank embarked on the establishment of a new geodetic reference network referred to as the 

Golden Triangle (Figure 1).  

 

Figure 1: Study area showing geographic data distribution 

In this newly established network, GPS was used to determine the satellite coordinates defined in 

the International Terrestrial Reference Frame 2005 specified at epoch 2007.39 (Kotzev, 2013). 

Data processing was done in two stages. First, coordinates for 3 permanent and 2 hub stations 

were computed from two permanent stations in the International GNSS Service (IGS) network. 
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Then, all other stations were determined from those 5 initial stations (Kotzev, 2013). This 

demand-led project has been divided into phases, with the first phase covering five out of the ten 

regions in Ghana namely; Ashanti, Greater Accra, Western, Central and Eastern. These regions 

form the completed first phase of the new geodetic reference network (Golden Triangle) as 

shown in Figure 1. The choice of the five out of ten administrative regions in Ghana for the first 

phase of the project was due to the fact that most of the natural resources such as gold, bauxite, 

manganese, oil, timber, cocoa, diamond and many others found in the country are situated in 

these regions. Hence, contributing significantly to the economic growth of Ghana. 

In this study, project data from the Ghana Survey and Mapping Division of Lands Commission 

in its on-going Land Administration Project (LAP) sponsored by the World Bank was applied. 

Two sets of 19 common points in both the local War Office (ɸ,λ,h)WAR and global WGS84 

(ɸ,λ,h)WGS84 system which form the Golden Triangle were provided. Here, ɸ is the latitude, λ is 

the longitude and h is the height of the reference ellipsoid. 

 

 

3. Methods 

 

3.1 Geocentric Translation Model 

 

 

The Geocentric Translation Model (GTM) was applied in this study to estimate transformation 

parameters for transforming coordinates from WGS84 datum to Accra datum. The GTM is 

defined in Equation 1 (Featherstone, 1997; Newsome and Harvey, 2003; Solomon, 2013) as 

 

where (X, Y, Z)global is the global rectangular coordinates based on the WGS84 and (X, Y, Z)local 

is the local rectangular coordinates based on Ghana War Office 1926 ellipsoid. In order to 

estimate the unknown transformation parameters (∆X, ∆Y, ∆Z), the most widely used arithmetic 

mean approach was applied. Detailed description about the procedure is given in Sect. 3.3 at step 

2. 

 

 

3.2 Artificial Neural Network 

 

In this study, backpropagation neural network (BPNN), radial basis function neural network 

(RBFNN) and generalized regression neural network (GRNN) were used to compensate the 

errors generated by the GTM. The choice of these networks was motivated by their frequent use 

as universal function approximators (Hornik et al., 1989; Hartman et al., 1990; Park and 

Sandberg, 1991) within the geoscientific disciplines. This study adopted the supervised learning 

algorithm for the ANN training. This is because in the supervised learning, the training data 
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comprises of training examples with each example having a pair of input vector and desired 

output data. In the BPNN and RBFNN model, a single hidden layer including input layer and 

output layer was constructed. While four layers thus input layer, pattern layer, a summation layer, 

and output layer formed the GRNN model architecture. The construction steps of the proposed 

approach termed as Artificial Neural Network-Error Compensation Model (ANN-ECM), more 

specifically BPNN-ECM, RBFNN-ECM and GRNN-ECM, their input and output element space 

and the models calculation results will be the focus of this paper. The detailed methodology is 

given in Sect. 3.3, respectively. 

 

 

3.3 Proposed Approach 

 

Several authors have argued that most coordinate transformation models cannot completely 

account for the distortions existing in the local geodetic networks (Featherstone, 1997; Newsome 

and Harvey, 2003; Tierra et al., 2008). Instead, most researchers have resorted to the use of 

Artificial Intelligence (AI) techniques. This is because AI is capable of minimizing the influence 

of local distortions in the transformation process thereby improving transformation performance. 

With this in mind, the present authors propose a new approach to compensate for the errors 

generated by the GTM. The specific detail on how the new approach was developed and 

implemented is presented as follows. 

 

Step 1: Transforming geodetic coordinates to rectangular coordinates 

A prerequisite step in the coordinate transformation process was to transform the geodetic 

coordinates of common points in both WGS84 datum and Accra datum into rectangular 

coordinates form. Hence, all the 19 geodetic coordinates of common points represented as 

(ɸ,λ,h)WGS84 and (ɸ,λ,h)WAR applied in this study were first transformed into rectangular 

coordinates using Equation 2 (Schofield, 2001; Leick, 2004). 

 

 

Here, N is the radius of curvature in the prime vertical; e2 is the first eccentricity of the reference 

ellipsoid; f is the flattening of the reference ellipsoid; h is the height of the reference ellipsoid; a 

is the semi-major axis of the reference ellipsoid and ),(  is the geodetic latitude and geodetic 

longitude respectively. The transformed rectangular coordinates for the WGS84 datum and 

Accra datum using Equation 2 are designated in this study as (X, Y, Z)WGS84 and (X, Y, Z)WAR, 

respectively. 

 

Step 2: Determining the transformation parameters 

In this step, out of the 19 rectangular coordinates of common points, 11 (X, Y, Z)WGS84 and (X, 

Y, Z)WAR were selected as reference points set P = (P1, P2, … P11) and applied to determine the 

GTM transformation parameters. The remaining 8 points served as the independent reference test 
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set T = (T1, T2,… T8) for the entire model validation denoted as (X, Y, Z)TEST WGS84 and (X, Y, 

Z)TEST WAR. It must be known that these test points were independent of the transformation 

process when the GTM parameters were determined. In order to obtain the translation 

parameters, Equation 3 was applied to estimate the individual translation vectors (∆X, ∆Y, ∆Z) 

of the 11 common points. Finally, the GTM transformation parameters were determined by 

simply finding the arithmetic mean (AM) (Equation 4) of the translation vector values (∆X, ∆Y, 

∆Z) estimated between the common points.  

 

 

Where, i = 1, 2, 3,…,n (n is the number of observations used = 11), X , Y , Z  are the 

arithmetic mean of  ∆X, ∆Y, ∆Z estimated values between the common points coordinates (War 

– WGS84). 

 

Step 3: Applying the transformation parameters 

The arithmetic mean translation vectors ),,( ZYX   determined in Step 2 becomes the 

transformation parameters. These parameters were then applied in Equation 5 to transform the 11 

(X, Y, Z)WGS84 into the Accra datum. These newly 11 transformed rectangular coordinates are 

denoted in this study as (X, Y, Z)NEW WAR. Similarly, the transformation parameters (∆X, ∆Y, ∆Z)  

were also applied to transform the 8 independent test points (X, Y, Z)TEST WGS84 into the Accra 

datum using Equation 6. These 8 transformed test coordinates is represented in this work as (X, 

Y, Z)TEST NEW WAR. 

 

Where, i = 1, 2, 3,…, 11  in Equation 5 and i = 1, 2, 3,…, 8 in Equation 6 corresponding to the 

number of common points used in the respective equations. 

 

 

Step 4: Error estimation 

In order to develop the error compensation model based on artificial neural network technology, 

there was the need to know the amount at which the GTM transformed coordinates (11 points) 
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estimated in Step 3 deviate from the measured Accra datum coordinates. To achieve this, 

Equation 7 was applied to the 11 transformed coordinates. 

 

Here, (X, Y, Z)WAR and (X, Y, Z)NEW WAR are respectively the measured Accra datum coordinates 

and the GTM transformed coordinates for the 11 points while (ex, ey, ez) indicate the estimated 

errors between them. In this step, the number of common points are 11 hence in Equation 7, i = 

1, …, 11. 

 

Step 5: Establishing the ANN-Error compensation model (ANN-ECM) 

The estimated errors (ex, ey, ez) and GTM transformed coordinates (X, Y, Z)NEW WAR constituted 

the learning examples. Here, (X, Y, Z)NEW WAR obtained from the GTM (Step 3) was used as the 

input data and (ex, ey, ez) as the target elements in the ANN model development. The input and 

output data was used in training the three ANN models namely BPNN, RBFNN and GRNN. 

Before the training process began, data normalization was first performed. The essence is to 

ensure constant variability in the datasets thereby improving convergence speed; in so doing it 

reduces the chances of getting stuck in local minima. In this study, the input data were 

normalized in the range [0, 1] by Equation 8 (Konaté et al., 2015)  

 

where X is the scaled value, xi is the current value of the input data, xmin is the minimum value of 

x, and xmax is the maximum value of x respectively. 

The next step was to train the BPNN, RBFNN and GRNN using the input and target data to 

generate an input-output mapping relationship. The BPNN was trained using Levenberg-

Marquardt algorithm (Nocedal and Wright, 2006) while RBFNN was trained using gradient 

descent rule (Fernandez-Redondo et al., 2006). When the training process of BPNN, RBFNN 

and GRNN is over, a calculation model for the GTM generated errors for the study area is 

developed. Therefore, the GTM errors of any position within the study area can be calculated by 

the optimum BPNN, RBFNN and GRNN models. That is, for any GTM transformed coordinates 

within the study area, one takes the transformed values into the trained BPNN, RBFNN and 

GRNN models and then calculates the errors. This optimum BPNN, RBFNN, GRNN predictions 

compensate for the GTM generated errors. Hence, the ANN-ECMs are formed. 

 

Step 6: Transforming coordinates with ANN-ECM 

When the ANN-ECMs were formed in Step 5, there was the need to test their efficiency. Here, 

the (X, Y, Z) TEST NEW WAR (Step 3) points were used as the test input data into the BPNN-ECM, 

RBFNN-ECM and GRNN-ECM respectively. The final transformed coordinates was then 

estimated by adding the estimated error from the BPNN-ECM, RBFNN-ECM and GRNN-ECM 

to the (X, Y, Z) TEST NEW WAR using Equation 9. This means that for any GTM transformed 

coordinates position within the study area, one uses the optimum BPNN, RBFNN and GRNN 

models to compensate for the errors generated by the GTM. 
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Here, (X, Y, Z)TRANS WAR is the ANN-ECMs transformed coordinates and (ex new, ey new, ez new) are 

the estimated errors by the optimum BPNN, RBFNN and GRNN schemes developed in Step 5. 

 

Step 7: Transforming rectangular coordinates to geodetic coordinates 

Since Ghana uses the 2D projected grid coordinate system for its surveying and mapping related 

activities, the (X, Y, Z)TRANS WAR was transformed into geodetic coordinates using Bowring 

Inverse Equation stated in (Gerdan and Deakin, 1999). This will make it possible for the geodetic 

coordinates to be projected onto the Transverse Mercator projection to obtain projected grid 

coordinate in Eastings (E) and Northings (N). The new projected coordinates was then compared 

with the measured projected coordinates to ascertain the proposed models accuracy performance. 

 

 

4. Accuracy Analysis 

 

 

In this study, the mean squared error (MSE) (Equation 10) was used as the criterion for 

determining the optimum BPNN, RBFNN and GRNN schemes. 

 

Additionally, in order to compare the test projected grid coordinate results obtained by the GTM 

and ANN-ECMs to the measured projected grid coordinates, horizontal error (HE), arithmetic 

mean error (Mean) and standard deviation (SD) were utilized. Their mathematical 

representations are given in Equations 11 to 13. 

 

Here, n is the total number of test examples presented to the learning algorithm, t and o are the 

measured and new projected grid coordinates from the various procedures. Also, e represents the 

error, estimated as the difference between the measured and new projected grid coordinates 

while e is the mean of the error values. 
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5. Results and Interpretation 

 

5.1 Geocentric Translation Model 

 

 

In order to develop the Artificial Neural Network-Error Compensation Models (ANN-ECMs), 

there was the need to first carry out coordinate transformation using the geocentric translation 

model (GTM). To achieve this, transformation parameters determined based on the arithmetic 

mean (AM) (Section 3.3 (Step 2)) was used in the GTM for transforming coordinates from 

WGS84 to Accra datum. Similarly, the Official Parameters (OP) determined by the then DMA 

now NGA (Mugnier, 2000) for the Ghana geodetic network was also applied. Table 1 presents 

the data applied in this study which form the newly established geodetic reference network in 

Ghana. The longitude (LONG) and latitude (LAT) values are in decimal degrees while the 

ellipsoidal heights (h) are in meters, respectively. The P1 to P11 in Table 1 represent the training 

data used for parameter estimation and ANN-ECMs formulation while T1 to T8 were used as the 

testing data. WAR_LONG, WAR_LAT and hWAR represent the Accra datum geodetic 

coordinates while WGS_LONG, WGS_LAT and hWGS is the WGS84 global datum geodetic 

coordinates (Table 1). A spatial map of the geographical distribution of the training and testing 

datasets used in this study are shown in Figure 2.  

 

Table 1: Common points coordinate between Ghana War Office 1926 ellipsoid and global 

WGS84 ellipsoid  

PT ID WAR_LONG WAR_LAT hWAR WGS_LONG WGS_LAT hWGS

P1 -0.423846053 5.457304069 82.06617254 -0.423560461 5.460090469 78.2744

P2 -0.559597439 5.623015028 307.9118986 -0.559316989 5.625798375 304.9379

P3 -1.501354089 5.452274171 279.5251808 -1.501101706 5.455086786 275.1437

P4 -0.122290556 5.936246667 525.5954331 -0.121995097 5.939034008 524.5492

P5 -1.033574469 6.369342009 491.7308587 -1.033307164 6.372117933 492.5083

P6 -0.765843033 6.573034939 780.2024389 -0.765572008 6.575796806 782.2084

P7 -0.749175303 6.125418053 327.4003755 -0.748904353 6.12819705 327.0218

P8 -1.164931611 6.568591978 613.9824331 -1.164662747 6.571357297 615.7568

P9 -1.630716606 7.233128636 530.9263781 -1.630465086 7.235861019 536.0062

P10 -1.412160561 6.554147306 502.1391431 1.411897078 6.556916419 503.7124

P11 1.966403494 5.846824211 401.8271718 1.966153267 5.849618067 399.3477

T1 -0.729977811 5.940330581 312.4534035 -0.729704947 5.943106975 311.0926

T2 -2.017006497 6.909735047 557.6480689 -2.016757894 6.912480178 560.8285

T3 -1.445590708 6.989461464 617.0558219 -1.445337764 6.992208703 620.9316

T4 -1.743673061 6.843594833 414.0673431 -1.743417842 6.846343694 417.0231

T5 -1.695085044 6.468790536 471.1630008 -1.69483105 6.471557664 472.143

T6 -0.734677778 5.27995835 88.36929587 -0.734406006 5.282744181 83.4515

T7 -1.286464464 6.051006676 438.7548656 -1.286211228 6.053791594 437.699

T8 -1.925406333 6.482004197 642.6333852 -1.925156364 6.484775481 643.5756  
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Figure 2: Training and test data distribution 

 

Table 2 shows the determined AM parameters with their standard deviation values (SD) and OP 

(Mugnier, 2000), respectively. The OP standard deviation values are not readily available in 

literature. The AM parameters and the OP (Table 2) were then applied to the test points as stated 

in Section 3.3 (Step 3) respectively. Table 3 presents the transformed test projected coordinates 

results for the AM and OP used in the GTM application.  

 

Table 2: Transformation parameters 

Parameter Official Parameters (OP) Arithmetic Mean (AM) Parameters

∆X 199 m 196.657 m ± 0.092 m

∆Y -32 m -33.072 m ± 0.623 m

∆Z -322 m -322.595 m ± 0.974 m  

 

The (∆E, ∆N) values (Table 3) shows the amount of difference between the test projected 

coordinates from the measured projected coordinates, making it possible to anticipate possible 

horizontal position accuracy. This horizontal position accuracy anticipation helps to inform the 

user about the limitation of the GTM based on using the AM or OP as shown by the horizontal 

error (HE) and standard deviation (SD) values computed (Table 3). 
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Table 3: Deviation of transformed projected coordinates from measured projected coordinates 

using GTM 

∆E (m) ∆N (m) HE (m) ∆E (m) ∆N (m) HE (m)

T1 -0.0843 -0.4861 0.4933 -1.1981 -0.8198 1.4517

T2 -0.6701 0.1356 0.6837 -1.7892 -0.1898 1.7992

T3 -1.3136 -0.2411 1.3355 -2.464 -0.5701 2.5291

T4 -0.3149 1.9498 1.9751 -1.4532 1.6519 2.2001

T5 -1.3436 1.4708 1.9921 -2.4978 1.1595 2.7538

T6 0.1488 0.9759 0.9872 -0.9819 0.6679 1.1875

T7 -1.1365 1.2336 1.6773 -2.2795 0.9195 2.458

T8 -0.9268 -0.1399 0.9373 -2.0561 -0.4659 2.1083

Mean -0.7051 0.6123 1.2602 -1.84 0.2941 2.061

SD 0.5709 0.908 0.5764 0.581 0.9199 0.5452

Test Point
AM OP

 

 

It is evident from Table 3 that the AM produced a better results compared to the OP. The 

shortcoming in the OP results could be attributed to the reason that, its parameters were 

determined using only 3 collocated points in the year 1996 (Mugnier, 2000) when the new 

Ghana geodetic reference network was yet to be established. Therefore, applying more 

coordinate points within the newly established geodetic network in Ghana enabled the AM to 

give a better representation of the datasets characteristics and thus improved the GTM 

performance. A cursory observation of Figure 3 shows visible aspects of this assertion based on 

the horizontal position errors where there is a noticeable evidence of improvement when AM 

parameters were utilized in the GTM compared to OP. 

 

 

Figure 3: Horizontal position error for the GTM 
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5.2 Artificial Neural Network-Error Compensation Model (ANN-ECM) 

 

 

It is a common practice to apply one test dataset for both validation and testing purposes, mostly 

with small datasets (Zhang, 2003; Ismail et al., 2012). Therefore, in the ANN-ECMs 

development, the 19 common points that form the newly established Ghana geodetic reference 

network was divided into two parts: 11 points form the training data and 8 comprise the test data 

(Table 1). It is important to note that the 11 training data and 8 testing data correspond to the 

same dataset used in the AM and OP application for the GTM. Because the AM results were 

better than the OP, the AM results produced by the GTM were used in the ANN-ECMs 

development. The ANN-ECMs procedure has been explained in Sect. 3.3. 

Here, the ANN models (BPNN, RBFNN and GRNN) that was able to compensate more of the 

GTM generated errors based on the mean square error (MSE) criterion from the testing set was 

selected as the better ANN-ECM. That is, the closer the MSE value from the optimum BPNN, 

RBFNN and GRNN models in the testing data is to the target MSE value from the GTM model, 

the better the ANN models ability to compensate for the errors produced by the GTM thereby 

improving transformation performance. Therefore, after several trials, the optimal structure of 

BPNN-ECM used here consists of 3 inputs, 1 hidden layer of 2 neurons using the hyperbolic 

tangent as activation function and 3 outputs using linear activation function. While the RBFNN-

ECM comprises of 3 inputs, one hidden layer of 11 neurons using Gaussian function as the 

nonlinear activation and 3 outputs using linear activation function. The GRNN-ECM structure 

was 3 inputs, smoothness parameter (σ) = 0.5 and 3 outputs respectively. In training the GRNN-

ECM, the radial basis and linear activation function was used in the hidden and output layer.  

Table 4 presents the test projected coordinates differences (∆E, ∆N) obtained between the known 

projected coordinates with those obtained from the three ANN-ECMs. The HE, mean error and 

SD values of each test projected coordinates are also presented. 

 

Table 4: Deviation of transformed test coordinates from measured coordinates using ANN-

ECMs 

∆E (m) ∆N (m) HE (m) ∆E (m) ∆N (m) HE (m) ∆E (m) ∆N (m) HE (m)

T1 -0.4005 -0.2556 0.4751 -0.0612 0.8428 0.8451 -0.0478 0.8134 0.8148

T2 -0.384 -0.274 0.4717 -0.0335 0.8428 0.8434 -0.0199 0.8131 0.8133

T3 -0.5059 -0.2986 0.5874 -0.1402 0.843 0.8546 -0.1257 0.8135 0.8231

T4 -0.3983 -0.2976 0.4972 -0.0333 0.8425 0.8432 -0.0191 0.812 0.8123

T5 -0.3998 -0.3003 0.5 -0.0331 0.8428 0.8434 -0.0185 0.8127 0.8129

T6 -0.3953 -0.2927 0.4919 -0.0334 0.8427 0.8433 -0.0194 0.8125 0.8127

T7 -0.3979 -0.2971 0.4966 -0.0332 0.8428 0.8435 -0.0189 0.8128 0.813

T8 -0.3916 -0.203 0.4411 -0.0332 0.9267 0.9273 -0.0193 0.897 0.8972

Mean -0.4092 -0.2774 0.4951 -0.0501 0.8533 0.8555 -0.0361 0.8234 0.8249

SD 0.0395 0.0339 0.0421 0.0377 0.0297 0.0293 0.0376 0.0298 0.0294

RBFNN-ECM GRNN-ECM

Test Point

BPNN-ECM

 
 

Ideally, a transformation model should produce results with zero error. However, in real world 

situations, this is almost impossible to achieve in function approximation related problems. 

Therefore, (∆E, ∆N) values (Table 4) offer a better indication about the extent the BPNN-ECM, 

RBFNN-ECM and GRNN-ECM transformed projected grid coordinates matched with the 
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measured projected coordinates by way of errors. A critical look at Table 4 shows that the 

differences in all test points are below 1 m for all the three ANN-ECMs.  

The HE values (Table 4) obtained signify the extent that the horizontal transformed coordinates 

produced by the BPNN-ECM, RBFNN-ECM and GRNN-ECM deviate from the measured 

horizontal coordinates. It also shows the positional accuracy of the transformed data in 

horizontal terms to the measured data. In comparison, the BPNN-ECM yielded a better 

horizontal positional accuracy than the RBFNN-ECM and GRNN-ECM as illustrated in Figure 4. 

 

 

Figure 4: Horizontal position error for ANN-ECMs 

 

This improvement in the horizontal displacements achieved by the BPNN-ECM means that, the 

model could compensate and absorb more of the errors in the GTM transformed coordinates 

better than the other methods. Also, the inference to be made here is that, the influence of the 

local geodetic network distortions in the GTM transformed coordinates has been more 

minimized by the BPNN-ECM thereby improving the GTM transformed coordinate results.  

The estimated SD values for the individual projected coordinate differences signify a practical 

expression for the precision of the new projected test coordinates by the ANN-ECMs. In Table 4, 

it can be seen that both the ANN-ECMs had closely related SD values which indicate the limit of 

the error bound by which every value within the new projected test coordinates varies from the 

most probable value.  
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5.4 Comparison of ANN-ECM and GTM 

 

 

Table 5 provides a summary of performance comparison among the ANN-ECMs, OP and AM 

used in the coordinate transformation. The evaluation of the results presented in Table 5 shows 

that the ANN-ECMs were superior to the AM and OP. Besides, the MSE values (Table 5) 

obtained by the ANN-ECMs compared to the AM and OP provide an independent measure of 

the ANN-ECMs performance. By virtue of the MSE values (Table 5), it can be stated that the 

transformed projected test coordinates rendered by the ANN-ECMs are in better agreement with 

the measured test data than the AM and OP.  

Comparing the ANN-ECMs (Table 5), it was known that the RBFNN-ECM and GRNN-ECM 

had a better MSE value in the Eastings compared to BPNN-ECM. This might possibly be related 

to the inability of the BPNN-ECM to compensate more of the GTM transformed Easting 

coordinate errors better than the RBFNN-ECM and GRNN-ECM. In the case of the Northing 

coordinates the BPNN-ECM was better. 

Table 5: Model Performance Statistic 

∆E(m) ∆N(m)

BPNN-ECM 0.1688 0.0779

RBFNN-ECM 0.0038 0.7289

GRNN-ECM 0.0025 0.6787

AM 0.7824 1.0964

OP 3.6808 0.8269

Model
MSE

 

The horizontal error curves for the ANN-ECMs, AM and OP as shown in Figure 5 allows for a 

more intuitive interpretation. A careful study of Figure 5 revealed that the ANN-ECMs had a 

relatively small fluctuation with the high deviations mostly concentrated in the AM and OP. 

Therefore, the ANN-ECMs showed fairly stable variations compared to AM and OP respectively. 

Comparatively, the BPNN-ECM is much better than the other models considered in this study. 

 

Figure 5: Horizontal position error for all the methods 
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The total error obtained using the ANN-ECMs, AM and OP is summarized in Table 6 by the 

mean (Equation 12), SD (Equation 13), maximum and minimum coordinate differences 

respectively.  

 

Table 6: Total error of the coordinate differences 

Model Mean (m) SD (m) Max (m) Min (m)

BPNN-ECM 0.4951 0.0421 0.5874 0.4411

RBFNN-ECM 0.8555 0.0293 0.9273 0.8432

GRNN-ECM 0.8249 0.0294 0.8972 0.8123

AM 1.2602 0.5764 1.9921 0.4933

OP 2.061 0.5452 2.7538 1.1875  

 

From Table 6, it can be seen that the BPNN-ECM, RBFNN-ECM GRNN-ECM, AM and OP 

predicts the horizontal position error (HE) with a minimum uncertainty in the order of 

approximately 0.44 m, 0.84 m, 0.81 m, 0.49 m and 1.19 m respectively. In addition, the overall 

maximum horizontal uncertainty of about 0.59 m, 0.93 m, 0.90 m, 1.99 m and 2.75 m was 

identified for BPNN-ECM, RBFNN-ECM, GRNN-ECM, AM and OP correspondingly.  

Additionally, analysis of Table 6 shows that in our case of coordinate transformation from 

WGS84 datum to Accra datum using GTM, the ANN-ECMs are superior to AM and OP used in 

the GTM application. Comparatively, the BPNN-ECM could produce more reliable transformed 

projected coordinate values than the RBFNN-ECM, GRNN-ECM, AM and OP respectively. 

This is consistent with the BPNN-ECM attaining the least mean horizontal position error value 

of approximately 0.5 m (Table 6) compared to the values attained among the other models. 

Hence, indicating a significant improvement in the horizontal position accuracy of the 

transformed projected test coordinates given by the BPNN-ECM. This assertion is also in 

conformance with Figure 5 where the trend of the horizontal position errors has been displayed. 

The inference made in line with the maximum and minimum values (Table 6) is that, the BPNN-

ECM transformed projected test coordinates differed by not more than 0.6 m. In the case of the 

RBFNN-ECM and GRNN-ECM, approximately 0.9 m was realized. The AM and OP on the 

other hand, had approximately 2.0 m and 2.8 m respectively. These minimum and maximum 

values (Table 6) give a better indication about the accuracy range in the models applied in terms 

of their practicality. On the strength of the maximum and minimum values, the BPNN-ECM can 

thus be applied within the Ghana geodetic reference network for improving the GTM 

performance. Likewise, the results in Table 6 showed that the SD values obtained indicate the 

precision and accuracy of the BPNN-ECM transformed projected test coordinate values. 

It is worth mentioning that the Ghana Survey and Mapping Division of Lands Commission have 

set a tolerance horizontal position error (HE) of ± 0.9144 m for its cadastral surveys and plans 

production (Yakubu and Kumi-Boateng, 2015). The results in Table 6 and Figure 5 using the 

BPNN-ECM and GRNN-ECM attained a maximum HE value of 0.5874 m and 0.8972 m while 

the RBFNN-ECM achieved 0.9273 m respectively. It can therefore be stated that, the BPNN-

ECM and GRNN-ECM falls within the tolerance value and thus can serve as a practicable 

technique in improving GTM results within the Ghana geodetic reference network. 
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6. Concluding remarks 

 

 

Coordinate transformation is necessary in the surveying and mapping industry particularly in 

developing countries like Ghana where the non-geocentric datum which is still utilized is highly 

heterogeneous. It also creates the opportunity to harmonize coordinates from different reference 

systems onto a common datum. Firstly, in this study, official parameters (OP) determined by the 

then DMA now NGA and the estimated arithmetic mean parameters (AM) were applied in the 

geocentric translation model to transform coordinates from WGS84 datum to Accra datum.  

Conversely, unsatisfactory coordinate transformation results were achieved by AM and OP in the 

geocentric translation model application. To improve performance of the geocentric translation 

model, this study proposed a novel technique known as the Artificial Neural Network-Error 

Compensation Model (ANN-ECM) to transform coordinates from WGS84 datum to Accra 

datum. The ANN-ECM comprise of the BPNN-ECM, RBFNN-ECM and GRNN-ECM. The 

results obtained showed that the proposed ANN-ECMs are feasible for coordinate transformation 

within Ghana’s geodetic reference network. It was also observed that the transformation 

accuracy of the proposed ANN-ECMs were significantly better than when the geocentric 

translation model was applied separately. This implies that the proposed ANN-ECMs can better 

compensate for the errors of the geocentric translation model. In comparison, the BPNN-ECM, 

RBFNN-ECM and GRNN-ECM produced a maximum horizontal position error of 

approximately 0.59 m, 0.93 m and 0.9 m respectively. The attained values of the BPNN-ECM 

and GRNN-ECM are in direct compliance with the Ghana Survey and Mapping Division of 

Lands Commission horizontal position shift tolerance of ± 0.9144 m for cadastral surveying and 

plan production in Ghana. Nonetheless, the RBFNN-ECM results could still be used for mapping 

related activities where accuracy is not in high demand.  

In view of this, the present authors recommend that, as the new geodetic reference network is 

being expanded to cover the Northern sectors and the whole country (Ghana) at large with more 

data availability, the Ghana Survey and Mapping Division of Lands commission should consider 

the adoption of the proposed approach as a practical alternative technique to improve geocentric 

translation model performance within the Ghana geodetic reference network. The advantage of 

this proposed approach lies in its ability to utilize the function approximation capabilities of both 

the geocentric translation model and ANN technology to produce promising coordinate 

transformation results. Furthermore, the obtained results have shown the computational 

superiority of combining knowledge based systems and data driven method.  

To conclude, it can reasonably be stated that the concept of the proposed approach will serve as a 

preliminary study for compensating errors generated by the geocentric translation model within 

the Ghana geodetic reference network.  
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