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Abstract: 

The weighed total least square (WTLS) estimate is very sensitive to the outliers in the partial 

EIV model. A new procedure for detecting outliers based on the data-snooping is presented in 

this paper. Firstly, a two-step iterated method of computing the WTLS estimates for the partial 

EIV model based on the standard LS theory is proposed. Secondly, the corresponding w-test 

statistics are constructed to detect outliers while the observations and coefficient matrix are 

contaminated with outliers, and a specific algorithm for detecting outliers is suggested. When the 

variance factor is unknown, it may be estimated by the least median squares (LMS) method. At 

last, the simulated data and real data about two-dimensional affine transformation are analyzed. 

The numerical results show that the new test procedure is able to judge that the outliers locate in 

x component, y component or both components in coordinates while the observations and 

coefficient matrix are contaminated with outliers. 

Keywords: Partial EIV model; Two-step iterated method; Weighted total least-squares; Outlier 

detection; Data-snooping; Two-dimensional affine transformation 

 

Resumo: 

O estimador dos Mínimos Quadrados Total é muito sensível à presença de outliers no modelo de 

observações de erro. Neste trabalho apresenta-se um novo modelo para detecção de outliers 

baseado na técnica data-snooping. Primeiro, é proposto um método iterativo para determinar o 

estimador dos Mínimos Quadrados Total na teoria dos Mínimos Quadrados. Em seguida, o teste 

estatatístico w é construído para detectar outliers enquanto as observações e a matriz de 

coeficientes são contaminadas com a presença de outliers, sendo sugerido um algoritmo 

específico para detecção de outliers. Quando o fator de variância é desconhecido, ele deve ser 

estimado pelo método dos Mínimos Quadrados Medianos. Foram analisados dados simulados e 

reais. Os resultados numéricos mostraram que o método proposto é capaz de identificar se os 
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outliers se encontram nas componentes em x ou em y, enquanto as observações e a matriz de 

coeficientes são contaminados com outliers.   

Palavras-chave: Modelo EIV Parcial; Método Iterativo Two-step; Estimador dos Mínimos 

quadrados Total; Detecção de Outlier; Data-snooping; Transformação Afim bidimensional. 

 

 

1. INTRODUCTION 

 

 

Gauss-Markov (G-M) model and least-squares (LS) method are widely used in geodetic science. 

Most of time, the elements of the coefficient matrix may be consisting of the observations 

possessing the statistical properties in many applications such as the coordinate transformation 

(Akyilmaz, 2007; Li et al., 2012; Li et al., 2013; Fang, 2014), and the estimates of the unknown 

parameters derived by the LS method would not be optimal because the statistical properties of 

the elements in the coefficient matrix are ignored. The errors-in-variables (EIV) model and so 

called total least-squares (TLS) method named by Gloub et al. (1980) are more rigorous than the 

LS method. There are many algorithms to compute the TLS estimate (Gloub et al.,1980; 

Schaffrin, 2006) or weighted TLS (WTLS) estimate (Schaffrin and Wieser, 2008; Shen et al., 

2011; Xu et al., 2012; Amiri-Simkooei and Jazaeri, 2012; Mahboub, 2012; Fang, 2013; Jazaeri et 

al., 2014).  

Unfortunately, like the LS estimate, the WTLS estimate is also extremely vulnerable to the 

outliers in the EIV model. Although many methods for detecting the outliesr in the G-M model 

are investigated extensively (Baarda, 1968; Pope, 1976; Kok, 1984; Huber 1981; Hekimoglu, 

2005; Gui et al. 1999, 2005a, 2005b, 2007, 2011; Guo et al., 2007; Hekimoglu and Erenoglu, 

2009; Lehmann, 2013; Hekimoglu et al., 2014), they cannot be directly employed to deal with 

the outliers in the EIV model. Schaffrin and Uzun (2011) have generalized the mean-shift 

method to detect a single outlier located either in the observations or in the coefficient matrix in 

the EIV model. The reliability was also analyzed (Schaffrin and Uzun, 2012). Amiri-Simkooei 

and Jazaeri (2013) applied the data-snooping procedure to identify the outliers based on the 

WTLS method formulated with the standard LS theory (Amiri-Simkooei and Jazaeri, 2012). 

However, the test procedure is required to be implemented more than once while there are some 

repeated random elements in the different locations of the coefficient matrix like the 

two-dimensional affine transformation.  

The partial EIV model is a generalized EIV model and can avoid considering the correlations 

between the repeated random elements in the coefficient matrix (Xu et al., 2012). Therefore, it is 

a more proper model to be used to deal with the case where the coefficient matrix follows a 

structured characteristic. Unfortunately, the test statistics for detecting the outliers cannot be 

clearly derived through the existing WTLS method. For this reason, a new two-step iterated 

approach of computing the WTLS estimates under the framework of LS theory is developed in 

this paper so that some test statistics of identifying the outliers for the partial EIV model can be 

constructed.  

The remaining of the paper is organized as follows. In Section 2, a two-step iterated method for 
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the partial EIV model taking advantage of LS theory is proposed. In Section 3, the corresponding 

w-test statistics are constructed to detect the outliers while the observations, coefficient matrix or 

both are contaminated with the outliers and an algorithm for detecting outliers in the partial EIV 

model is designed. If the variance factor is not known, we will employ the least median squares 

(LMS) method to estimate it. In a latter section, a simulated data and a real data about 

two-dimensional affine transformation are used to verify the validity of the proposed method. In 

the end, some concluding remarks are presented. 

 

 

2. PARTIAL EIV MODEL AND WTLS ESTIMATE 

 

 

As a matter of fact, not all elements of the coefficient matrix are random and there are some 

repeated random elements in the different locations of the coefficient matrix such as the 

coordinate transformation. As a result, their correlations between the repeated random elements 

must be taken into account. The five rules (Mahboub, 2012) can be used to determine the 

variance-covariance matrix of the coefficient matrix. However, if the partial EIV model 

proposed by Xu et al. (2012) is considered, the correlations can be avoided so that the additional 

burden is reduced. Therefore, the partial EIV model is more superior to be adopted. The function 

model is shown as following:  

  T

n
    


 

L X I h Ba

a a e   


                            (1)  

Where X= t×1 vector of unknown parameters; L= n×1 vector of observations; In= n×n identity 

matrix; h= nt×1 vector that is consisting of zero and fixed elements of the coefficient matrix A;B 

=nt×s known structured matrix; s=the number of different random elements of A = invec(h+Ba); 

 a = s ×1  true values vector of a; e = s ×1 random errors vector of a; Δ= n ×1 vector of random 

errors of observations; invec is a mathematic function for transforming an nt×1 vector to an n × t 

matrix;  =Kronecker product operator. The stochastic model is expressed as follows: 

2
00

~ ,
00

L

n s

a

N 

     
     

      

Q

Qe


                       (2)  

Where QL= n×n cofactor matrix of L; Qa= s×s cofactor matrix of a; σ2=unknown variance factor. 

A two-step iterated method of computing the WTLS estimate for the partial EIV model is 

proposed in order to develop an outlier detection method suitable for the partial EIV model. For 

any given X(0), the model (1) can be transformed as follows: 

     0 0
T T

n n

               
  

L X I h X I Ba

a a e     


                  (3)  
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Furthermore, the model (3) can be rewritten as 

   0
T

n

s

 
            

 

X I BL
a

ea
I


                      (4)  

where
    0

T

n  L L X I h . If we denote 

  
  
 

L
L

a
,

    0
T

n

s

 


 
 
 

X I B
A

I

,
 

2 2
0

0

L

L

a

cov  
  

    
   

Q
Q

Qe


          (5)  

the estimate of a can be derived by the LS principle (Koch, 1999). As a result, we have 

  
1

1 1ˆ T T

L L


 a A Q A A Q L                              (6)  

The residual vector of a is 

 ˆ
a  V a a                                 (7)  

Inserting â into the first equation of the model (1) yields 

   ˆ
n   T

L X I h Ba                           (8)  

If the inverse transformation of the mathematic operator vec (invec) is used, we can obtain 

  ˆinvvec A h Ba                            (9)  

Then the model (8) is easily rewritten as follows: 

                              (10)   L AX   

Similarly, based on the LS principle (Koch, 1999), the estimate of X is 

 
1

1 1ˆ T T

L L


 X A Q A A Q L                          (11)  

and the residual vector of L is  

ˆ
L V L AX                               (12)  

The posterior estimate of the variance factor, which can be obtained from Equation 7 and 

Equation 12, is 

1 1
2ˆ

T T

L L L a a a

n t


 




V Q V +V Q V
                        (13)  

 

3. OUTLIER DETECTION PROCEDURE IN PARTIAL EIV 
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MODEL 

 

 

The data-snooping method suggested by Baarda (1968) is employed extensively in geodetic data 

processing for detecting the outliers (Kok, 1984; Koch, 1999). If the observations or coefficient 

matrix in the partial EIV model are contaminated with the outliers, the following w-test statistics 

can be constructed based on Equation 6 or Equation 11 to detect the outliers: 

 
1

1
~ 0,1

T

i L L
ai

T

i iL L

w N







g Q V

g Q R g
                          (14)  

 
1

1
~ 0,1

T

j L L

Lj
T

j L L j

w N







f Q V

f Q R f
                          (15)  

where  ˆ
L
 V L Aa ,

  
1

1 1T T

n sL L L


 

 R I A A Q A A Q ,   
1

1 1T T

L n L L


  R I A A Q A A Q ;   

  1
0, ,1, 0T

i n s 
g  

and  
1

0, ,1, 0T

j n
f are an unit vector with the ith and jth element equal to 1, respectively; 

N(0,1) represents the standard normal distribution. 

In general, when the variance factor is unknown, its posterior estimate 2̂ can be adopted (Pope, 

1976). Then we have  

1

1
~

ˆ

T

i L
ai n

T

i iL

w 







g Q V

g Q Rg
                             (16)  

and 

1

1
~

ˆ

T

j L L

Lj n t
T

j L L j

w 








f Q V

f Q R f
                            (17)  

Where τn = τ distribution with n degree of freedom. The computation about τ distribution can be 

found in Baselga (2007) and Guo and Zhao (2012). 

The robust method is an efficient one to estimate the variance factor. By employing the least 

median squares (LMS) method (Rousseeuw and Leroy, 1987), the variance factor may be 

estimated by 

 2 2ˆ 1.4826 mediana aiw                               (18)  

or 

 2 2ˆ 1.4826 medianL Ljw                              (19)  

So the test statistics (14) and (15) with (18) and (19) become 
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1

1ˆ

T

i L
ai

T

a i iL

w







g Q V

g Q Rg
                                (20)  

and 

1

1ˆ

T

j L L

Lj
T

L j L L j

w







f Q V

f Q R f
                               (21)  

The superiority of the above two test statistics is that they are very robust to the outliers so that it 

is more reliable for them to be used for detecting the outliers. It is to be noted here that they do 

not strictly follow a normal distribution. Therefore, it is very hard to give the exact probability 

distributions of them. In order to simplify the computation of the threshold value which is used 

to identify the outliers, the upper percentage point of the standard normal distribution is still used 

when the principle of identifying the outliers is established. 

The implemented procedure for detecting the outliers in the partial EIV model is summarized as 

follows:  

Step1. Give a,L,h,B,QL,Qe  and define
 0

0

L

L

e

 
  
 

Q
Q

Q
. 

Step2. Set the initial value    
10 1 1ˆ T T

L L


 X A Q A A Q L . 

Step3. For any k, compute 

 

Step4. Compute
 

            
1

1 1ˆ
T T

k k k k k

L L


 a A Q A A Q L . 

Step5. Compute     ˆk k
invvec A h Ba and

 
          

1
1 1 1ˆ

T T
k k k k

L L


  X A Q A A Q L . 

Step6. If    1ˆ ˆk k



 X X , the iteration will be stopped, where  is a given value. Otherwise, 

return to Step 3. 

Step7. Compute    ˆk k

a  V a a , 
   1k k

L


V L AX and  

          1 1

2ˆ

T T
k k k k

L L L a a a

n t


 




V Q V V Q V
. 

Step8. According to the data-snooping procedure, for single outlier, if  
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and 

 

are satisfied simultaneously, one can judge that the outlier locates in the observation 

equation containing the observation Lj and coefficient matrix element ai. For multiple outliers, if 

 
 

 
1 2

1, ,
max

k

ai
i n n s

w u 
  

  

and 

 
 

 
1 2

1, ,
max

k

Lj
j n

w u 


  

we will deem that the corresponding observation equation containing the observations Lj and 

coefficient matrix elements ai is contaminated with outlier. But one still can’t confirm that the 

outliers locate in the observations or coefficient matrix, or both. Here uα is the upper 

α-percentage point of the standard normal distribution.  

Step 9. If multiple outliers exist in the observations or coefficient matrix, the above procedure of 

Step 1 to Step 8 should be repeated until all the w-test statistics are smaller than the threshold 

value. 

 

 

4. NUMERICAL RESULTS  

 

4.1. Simulated two-dimensional affine transformation 
 

The mathematic model for the two-dimensional affine transformation is expressed as follows: 

 
1

1

1

2

2

2

1 0 0 0

0 0 0 1

t s s

s st

a

b

x x y c

x y ay

b

c

 
 
 
    

     
    

 
 
  

                       (22)  

 

Table 1: Coordinates of points with random errors in start system and target system (unit: m) 

coordinate 1 2 3 4 5 6 7 8 9 10 

sx  

sy  

tx  

ty  

70.00 

49.98 

180.00 

59.98 

66.16 

61.74 

141.21 

114.67 

56.17 

69.02 

86.70 

163.71 

43.83 

69.01 

37.26 

188.45 

33.82 

61.77 

11.77 

179.38 

30.00 

50.00 

19.99 

140.00 

33.80 

38.25 

58.77 

85.35 

43.83 

30.97 

113.31 

36.28 

56.17 

30.98 

162.77 

11.56 

66.19 

38.24 

188.24 

20.61 

 

 

The data are displayed in Table 1, which is taken from Amiri-Simkooei and Jazaeri (2013). In 

this example, there are ten points in total. So the partial EIV model is  
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   20

T    


 

L X I h Ba

a a e   


                                (23)  

where  1 1 2 2 10 10, , ,   ,
T

s s s s s sx y x y x y   a , 1 2 6   T T T T   h h h h ,  1 2 4 5 1 20
0,0, ,0T T T T


   h h h h , 

 

  3 1 20
1,0,1,0, ,1,0T


h ,  6 1 20

0,1,0,1, ,0,1T


h , 1 1 2 2 10 10

1 20
, , ,   ,T

t t t t t tx y x y x y


   L , 

 

 
1

2

6

 
 
 
 
 
 

B

B
B

B

,

 

1

20 20

1 0 0 0

0 0 0 0

1 0

0 0 0 0


 
 
 
 
 
 
  

B ,

 

2

20 20

0 1 0 0

0 0 0 0

0 1

0 0 0 0


 
 
 
 
 
 
  

B ,

 

3 6

20 20

0 0 0 0

0 0 0 0

0

0 0 0 0


 
 
 
  
 
 
  

B B  

 

 

4

20 20

0 0 0 0

1 0 0 0

0 0

0 0 1 0


 
 
 
 
 
 
  

B ,

 

5

20 20

0 0 0 0

0 1 0 0

0 0

0 0 0 1


 
 
 
 
 
 
  

B . 

In order to give the reliable evaluations for the proposed outlier detection method, the following 

five schemes for adding outliers are discussed. The significant level for determining critical 

value is set as 0.05, which is very frequently used (Gao et al. 1992). 

Scheme 1: According to Amiri-Simkooei and Jazaeri (2013), the outlier of magnitude 0.1 m 

which is 10 times of the priori standard deviation, is added into the xs component of point 4 in 

the start system. 

The residuals of the observations and random vector a and the corresponding w-test statistics are 

displayed in Table 2. Obviously, the absolute values of residuals of the x components of point 4 

in the start system and target system are greater than others. Meanwhile, both 
27 4.6774aw  and 

 
7 3.7011Lw  surpass the threshold value u0.975 = 1.96. So we deem that there is an outlier in the 

x component of the start system, target system or both, which is kept the same with the set 

simulated case. However, we can’t determinate the special position of the outlier.Scheme 2: The 

outlier of magnitude 0.1 m is added into both components of point 4 in the start system.The 

residuals and w-test statistics are shown in Table 3. As we know, the absolute values of residuals 

of the x components of point 4 in both coordinate systems are greater than others.Particularly, 

both 
27 2.7943aw  and 

7 3.2089Lw  for the x component of point 4 are beyond the threshold 

value1.96 , and 
8 2.8142Lw  for the yt component of point 4 in the target system exceeds 1.96 

too. Although 
28 1.8708aw  for the ys component of point 4 in the start system is smaller than 

the threshold value 1.96, the absolute values of w-test statistics and their corresponding absolute 

values of residuals are very tremendous. Thus, both components of point 4 are considered to be 

contaminated with outliers. Unfortunately, we can’t discriminate the specific positions of these 

outliers. 
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Table 2: Residuals of observations and random vector a and corresponding w-test statistics 

(Scheme 1) (unit: m) 

Point No. 

Target system  Start system 

Coordinate LjV  Ljw  Coordinate aiV  aiw  

1 tx  

ty  

-0.0013973 

-0.00035329 

-0.25266 

-0.063881 
sx  

sy  

0.0048841 

-0.0013852 

0.32287 

-0.091561 

2 tx  

ty  

0.0091772 

0.0053935 

1.6594 

0.97525 
sx  

sy  

-0.025934 

-0.025934 

-1.7144 

-0.21159 

3 tx  

ty  

0.008246 

0.0015716 

1.491 

0.28417 
sx  

sy  

-0.029849 

0.010229 

-1.9732 

0.67613 

4 tx  

ty  

-0.020466 

-0.0055651 

-3.7011 

-1.0064 
sx  

sy  

0.070755 

-0.018725 

4.6774 

-1.2377 

5 tx  

ty  

0.0046209 

-0.0011276 

0.83561 

-0.20392 
sx  

sy  

-0.020742 

0.013769 

-1.3712 

0.91015 

6 tx  

ty  

0.0036126 

0.0021386 

0.65332 

0.38674 
sx  

sy  

-0.010178 

-0.0013217 

-0.67285 

-0.087364 

7 tx  

ty  

0.0054174 

0.0020203 

0.97969 

0.36536 
sx  

sy  

-0.017635 

0.0027668 

-1.1658 

0.18289 

8 tx  

ty  

-0.0040845 

0.00026835 

-0.7386 

0.048526 
sx  

sy  

0.016878 

-0.0092558 

1.1158 

-0.61182 

9 tx  

ty  

0.00051964 

-0.00050291 

0.093964 

-0.090939 
sx  

sy  

-0.0030844 

0.0030535 

-0.2039 

0.20184 

10 tx  

ty  

-0.0056462 

-0.0038434 

-1.021 

-0.69502 
sx  

sy  

0.014906 

0.0040706 

0.98537 

0.26907 
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Table 3: Residuals of observations and random vector a and corresponding w-test statistics  

(Scheme 2) (unit: m) 

Point No. 

Target system Start system 

Coordinate LjV  Ljw  Coordinate aiV  aiw  

1 tx  

ty  

-0.00093979 

0.00072597 

-0.10477 

0.080929 
sx  

sy  

0.0052099 

-0.0047832 

0.22502 

-0.20659 

2 tx  

ty  

0.011106 

0.0099526 

1.238 

1.1094 
sx  

sy  

-0.024541 

-0.017565 

-1.06 

-0.75868 

3 tx  

ty  

0.011362 

0.0089374 

1.2665 

0.99627 
sx  

sy  

-0.024541 

-0.017565 

-1.1918 

-0.56127 

4 tx  

ty  

-0.028779 

-0.025239 

-3.2089 

-2.8142 
sx  

sy  

0.064696 

0.043314 

2.7943 

1.8708 

5 tx  

ty  

0.0077303 

0.0062289 

0.86182 

0.69444 
sx  

sy  

-0.018478 

-0.0094334 

-0.79809 

-0.40745 

6 tx  

ty  

0.0055308 

0.006682 

0.61665 

0.745 
sx  

sy  

-0.0087742 

-0.015647 

-0.37897 

-0.6758 

7 tx  

ty  

0.0058653 

0.0030857 

0.65393 

0.34403 
sx  

sy  

-0.017298 

-0.00059882 

-0.7471 

-0.025864 

8 tx  

ty  

-0.0048241 

-0.0014746 

-0.5378 

-0.16439 
sx  

sy  

0.016352 

-0.0037588 

0.70624 

-0.16235 

9 tx  

ty  

-0.00067131 

-0.0033185 

-0.074838 

-0.36994 
sx  

sy  

-0.0039448 

0.011924 

-0.17038 

0.51502 

10 tx  

ty  

-0.0063798 

-0.0055804 

-0.71127 

-0.62215 
sx  

sy  

0.014371 

0.0095432 

0.62072 

0.41219 

  

Scheme 3: The outlier of magnitude 0.1 m is added into the xs component of point 4 in the start 

system and the yt component of point 4 in target system. 

The residuals and the w-test statistics are obtained, which is displayed in Table 4. The results 

from Table 4 show that the test statistics satisfy 
27 4.9415>1.96aw  and 

7 4.106>1.96Lw  , which 

shows that the x component of point 4 is possibly contaminated with an outlier. Although the 

absolute value of residual for the yt component of point 4 in the target system is small, 
 

28 3.0386>1.96aw  and the absolute value of residual for the ys component of point 4 in the start 

system demonstrate that there is an outlier in the y component.  
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Table 4: Residuals of observations and random vector a and corresponding w-test statistics 

(Scheme3) (unit: m) 

Point No. 

Target system Start system 

Coordinate LjV  Ljw  Coordinate aiV  aiw  

1 tx  

ty  

-0.0017266 

-0.00078794 

-0.49177 

-0.22442 
sx  

sy  

0.0053326 

-0.00030473 

0.42223 

-0.024126 

2 tx  

ty  

0.0077803 

0.0035539 

2.2158 

1.0121 
sx  

sy  

-0.024022 

0.0013597 

-1.9021 

0.10765 

3 tx  

ty  

0.0059859 

-0.0014011 

1.7047 

-0.399 
sx  

sy  

-0.02675 

0.017599 

-2.1181 

1.3933 

4 tx  

ty  

-0.014411 

0.0023763 

-4.106 

0.67706 
sx  

sy  

0.062409 

-0.038379 

4.9415 

-3.0386 

5 tx  

ty  

0.002359 

-0.0040971 

0.67191 

-1.167 
sx  

sy  

-0.01763 

0.021125 

-1.396 

1.6725 

6 tx  

ty  

0.0022133 

0.00030441 

0.63048 

0.086714 
sx  

sy  

-0.0082465 

0.0032151 

-0.65296 

0.25455 

7 tx  

ty  

0.0050847 

0.001589 

1.4484 

0.45262 
sx  

sy  

-0.017166 

0.0038252 

-1.3592 

0.30285 

8 tx  

ty  

-0.0035534 

0.00097174 

-1.0121 

0.27677 
sx  

sy  

0.01616 

-0.011008 

1.2795 

-0.8715 

9 tx  

ty  

0.0013812 

0.00063268 

0.39339 

0.1802 
sx  

sy  

-0.004261 

0.00023425 

-0.33738 

0.018546 

10 tx  

ty  

-0.0051132 

-0.0031418 

0.39339 

0.1802 
sx  

sy  

0.014175 

0.0023335 

1.1224 

0.18475 

 

 

Table 5: Residuals of observations and random vector a and corresponding w-test statistics 

(Scheme 4) (unit: m) 

Point No. 

Target system Start system 

Coordinate LjV  Ljw  Coordinate aiV  aiw  

1 tx  

ty  

-0.0023489 

-0.00016403 

-0.58721 

-0.041006 
sx  

sy  

0.0090658 

-0.0040362 

0.75905 

-0.33795 

2 tx  

ty  

0.0051497 

0.00618 

1.2873 

1.5449 
sx  

sy  

-0.0082485 

-0.014416 

-0.69062 

-1.207 

3 tx  

ty  

0.0017338 

0.0028432 

0.4334 

0.71071 
sx  

sy  

-0.0012538 

-0.0079015 

-0.10498 

-0.6616 

4 tx  

ty  

-0.0030607 

-0.008957 

-0.76547 

-2.2401 
sx  

sy  

-0.0056531 

0.029688 

-0.47332 

2.4858 

5 tx  

ty  

-0.0018874 

0.00014316 

-0.47184 

0.035789 
sx  

sy  

0.0078336 

-0.0043421 

0.65589 

-0.36357 

6 tx  

ty  

-0.00040699 

0.0029242 

-0.10176 

0.73114 
sx  

sy  

0.0074691 

-0.012501 

0.62537 

-1.0467 

7 tx  

ty  

0.0044704 

0.0021985 

1.1177 

0.54968 
sx  

sy  

-0.013485 

0.00014176 

-1.1291 

0.01187 

8 tx  

ty  

-0.0025448 

-3.0876e-005 

-0.63621 

-0.0077191 
sx  

sy  

0.010115 

-0.0049597 

0.84692 

-0.41528 

9 tx  

ty  

0.0030058 

-0.00099484 

0.75143 

-0.2487 
sx  

sy  

-0.014008 

0.0099803 

-1.1728 

0.83567 

10 tx  

ty  

-0.0041109 

-0.0041423 

-1.0278 

-1.0356 
sx  

sy  

0.0081649 

0.0083459 

0.68362 

0.69881 
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Table 6: Residuals of observations and random vector a and corresponding w-test statistics with 
deleting  point 4 in both of start system and target system (unit: m) 

Point No. 

Target system Start system 

Coordinate LjV  Ljw  Coordinate aiV  aiw  

1 tx  

ty  

-0.0025167 

-0.00065539 

-0.7071 

-0.18414 
sx  

sy  

0.0087558 

-0.0024088 

0.89974 

-0.24753 

2 tx  

ty  

0.0044403 

0.0041034 

1.2804 

1.1833 
sx  

sy  

-0.0095588 

-0.0075354 

-0.98226 

-0.77434 

3 tx  

ty  

0.0005872 

-0.00051201 

0.17764 

-0.15489 
sx  

sy  

-0.0033716 

0.0032211 

-0.34646 

0.331 

4 tx  

ty  
－ 
－ 

－ 
－ 

sx  

sy  
－ 
－ 

－ 
－ 

5 tx  

ty  

-0.0030325 

-0.0032077 

-0.91736 

-0.97033 
sx  

sy  

0.0057185 

0.0067668 

0.58763 

0.69537 

6 tx  

ty  

-0.0011139 

0.00085512 

-0.3212 

0.24659 
sx  

sy  

0.0061635 

-0.0056457 

0.63336 

-0.58015 

7 tx  

ty  

0.0043048 

0.0017142 

1.2096 

0.48168 
sx  

sy  

-0.013791 

0.001748 

-1.4172 

0.17963 

8 tx  

ty  

-0.002273 

0.00076394 

-0.64022 

0.21517 
sx  

sy  

0.010617 

-0.0075976 

1.091 

-0.78073 

9 tx  

ty   

0.0034443 

0.00028881 

0.97631 

0.081865 
sx   

sy  

-0.013198 

0.0057284 

-1.3562 

0.58866 

10 tx  

ty  

-0.0038405 

-0.0033504 

-1.0817 

-0.94369 
sx  

sy  

0.0086644 

0.0057231 

0.89036 

0.58811 

 

Table 7: Residuals of observations and random vector a and corresponding w-test statistics 

(Scheme 5) (unit: m) 

Point No. 

Target system Start system 

Coordinate LjV  Ljw  Coordinate aiV  aiw  

1 tx  

ty  

0.0045553 

0.0018727 

0.82093 

0.33749 
sx  

sy  

-0.014464 

0.0016235 

-0.88826 

0.09968 

2 tx  

ty  

-0.016465 

-0.0067103 

-2.9676 

-1.2095 
sx  

sy  

0.052397 

-0.0061015 

3.2177 

-0.37462 

3 tx  

ty  

0.0059838 

-0.0014032 

1.0783 

-0.25286 
sx  

sy  

-0.026717 

0.017593 

-1.6407 

1.0802 

4 tx  

ty  

0.0098111 

0.012636 

1.7687 

2.2779 
sx  

sy  

-0.013972 

-0.03093 

-0.85803 

-1.8991 

5 tx  

ty  

-0.0039266 

-0.0067598 

-0.70769 

-1.2183 
sx  

sy  

0.0021913 

0.019193 

0.13456 

1.1784 

6 tx  

ty  

-0.0040698 

-0.002357 

-0.73355 

-0.42483 
sx  

sy  

0.011557 

0.0012864 

0.70971 

0.078982 

7 tx  

ty  

0.0012096 

-5.41e-005 

0.21801 

-0.0097511 
sx  

sy  

-0.004942 

0.0026377 

-0.30348 

0.16195 

8 tx  

ty  

-0.0035487 

0.00097413 

-0.63958 

0.17556 
sx  

sy  

0.016128 

-0.011002 

0.9904 

-0.67549 

9 tx   

ty  

0.0052762 

0.0022808 

0.9509 

0.41105 
sx  

sy  

-0.016531 

0.0014335 

-1.0151 

0.088012 

10 tx  

ty  

0.0011737 

-0.00047889 

0.21154 

-0.086313 
sx  

sy  

-0.0056471 

0.0042659 

-0.34679 

0.26192 
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Scheme 4: The outlier of magnitude 0.1m is added into the y component of point 4 in both start 

system and target system. 

The concrete results are presented in Table 5. It is not difficult to know 
28 2.4858>1.96aw   

and 
8 2.2401>1.96Lw  from Table 5, but the absolute values of other w-statistics are smaller than 

1.96. It means that only y component of point 4 contains an outlier, which is consistent with the 

set simulated case. If we will delete point 4 in both coordinate systems, the new results about the 

residuals and w-test statistics are obtained, which is displayed in Table 6. It is shown that all aiw  

and 
Ljw are smaller than the threshold value 1.96, which demonstrates that the remaining 

observations are clean without the effects of outliers. 

We just discuss the case that the outlier locates in the same point in two different systems for 

scheme 1 to 4. In fact, there may be multiple outliers in the different points for the 

two-dimensional coordinate transformation. Hence, the following scheme 5 is used to assess the 

efficiency of the proposed procedure for detecting multiple outliers in the partial EIV model. 

Scheme 5: In this simulation, two outliers of magnitude 0.1 m are added to the xs component of 

point 2 in the start system and the yt  component of point 4 in the target system, respectively.  

The detail results about the residuals and w-test statistics are listed in Table 7.  
23 3.2177>1.96aw   

and  
3 2.9676>1.96Lw   indicate that the x component of point 2 contains an outlier. On the other 

hand, due to 
28 1.8991aw  and 

8 2.2779>1.96Lw  , the ycomponent of point 4 is probable to be 

contaminated with an outlier. Because the outlier may locate in the different locations, we will 

delete point 2 in both coordinate systems firstly. After that, the new results and w-test statistics 

are obtained, which can be found in Table 8. Apparently, there is an outlier in y component in the 

start system or target system or both based on the criterion for identifying outlier. As a result, 

point 4 in both two coordinate systems should be deleted. After removing the assigned outlying 

observations, the new results about the residuals and w-test statistics are presented in Table 9, 

which indicates that there is no outlier in the observations of both coordinate systems. 
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Table 8: Residuals of observations and random vector a and corresponding w-test statistics with 
deleting the point 2 in both of start system and target system (Scheme 5) (unit: m) 

Point No. 

Target system Start system 

Coordinate LjV  Ljw  Coordinate aiV  aiw  

1 tx  

ty  

-0.0015997 

-0.00063521 

-0.48961 

-0.19442 
sx  

sy  

0.0051277 

-0.00065729 

0.51616 

-0.06616 

2 tx  

ty  
－ 
－ 

－ 
－ 

sx  

sy  
－ 
－ 

－ 
－ 

3 tx  

ty  

-0.00017461 

-0.003914 

-0.053438 

-1.1979 
sx  

sy  

-0.0071247 

0.015311 

-0.71718 

1.5411 

4 tx  

ty  

0.005999 

0.011082 

1.7512 

3.2349 
sx  

sy  

-0.0018417 

-0.032343 

-0.18538 

-3.2555 

5 tx  

ty  

-0.0048223 

-0.0071243 

-1.3711 

-2.0256 
sx  

sy  

0.005046 

0.018861 

0.50794 

1.8985 

6 tx  

ty  

-0.0026122 

-0.0017621 

-0.74458 

-0.50227 
sx  

sy  

0.0069248 

0.0018267 

0.69706 

0.18387 

7 tx  

ty  

0.0035602 

0.00090246 

1.0213 

0.25889 
sx  

sy  

-0.012434 

0.0035085 

-1.2516 

0.35315 

8 tx  

ty  

-0.0020919 

0.0015692 

-0.59622 

0.44725 
sx  

sy  

0.011502 

-0.010462 

1.1578 

-1.053 

9 tx  

ty   

0.0043731 

0.0019111 

1.2433 

0.54335 
sx  

sy  

-0.013669 

0.0010985 

-1.3759 

0.11057 

10 tx  

ty  

-0.0026315 

-0.002029 

-0.76792 

-0.59209 
sx  

sy  

0.0064686 

0.0028559 

0.65114 

0.28746 

 

 

Table 9: Residuals of observations and random vector a and corresponding w-test statistics with 

deleting point 2 and point 4 in both of start system and target system (Scheme 5) (unit: m) 

Point No. 

Target system Start system 

Coordinate LjV  Ljw  Coordinate aiV  aiw  

1 tx  

ty  

-0.00070383 

0.00102 

-0.23467 

0.34007 
sx  

sy  

0.004853 

-0.0054855 

0.58449 

-0.66066 

2 tx  

ty  
－ 
－ 

－ 
－ 

sx  

sy  
－ 
－ 

－ 
－ 

3 tx  

ty  

0.0027479 

0.0014848 

1.0525 

0.56868 
sx  

sy  

-0.0080217 

-0.00044471 

-0.96613 

-0.053561 

4 tx  

ty  
－ 
－ 

－ 
－ 

sx  

sy  
－ 
－ 

－ 
－ 

5 tx  

ty  

-0.002371 

-0.0025964 

-0.79065 

-0.8658 
sx  

sy  

0.0042931 

0.0056432 

0.51706 

0.67966 

6 tx  

ty  

-0.0012774 

0.00070397 

-0.40134 

0.22118 
sx  

sy  

0.0065153 

-0.0053684 

0.7847 

-0.64656 

7 tx  

ty  

0.0036943 

0.0011501 

1.1405 

0.35506 
sx  

sy  

-0.012475 

0.0027853 

-1.5025 

0.33546 

8 tx  

ty  

-0.0027834 

0.00029229 

-0.85898 

0.090205 
sx  

sy  

0.011715 

-0.0067323 

1.4109 

-0.81083 

9 tx  

ty  

0.0035459 

0.00038276 

1.0946 

0.11816 
sx  

sy   

-0.013415 

0.005557 

-1.6157 

0.66929 

10 tx  

ty  

-0.0028525 

-0.0024375 

-0.8962 

-0.76582 
sx  

sy  

0.0065361 

0.0040453 

0.7872 

0.48721 
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4.2 Real data about map rectification 
 

 

The example is about the map rectification. The 2D affine transformation is used to rectify the 

map. The scale of map is 1:500 for figure 1.  

 

Figure 1: The distorted map and its rectified map using affine transformation 

 

There are ten common points whose theoretical coordinates are previously known, and then we 

sample their coordinates on the distorted map. The affine transformation is used to rectify the 

map. The sampled coordinates and theoretical coordinates of common points are treated as the 

coordinates in the start system and target system, respectively, which is displayed in Table 10. 

The transformation parameters can be estimated by using the common points with the 2D affine 

transformation. By employing the proposed algorithm, the residuals and w-test statistics of the 

observations and random vector a are derived, which is shown in Table 11. Because the w-test 

statistics satisfy 
14 21.838>1.96Lw  and  

34 21.172>1.96aw  , the point 7 is suspected as an 

outlier and should be deleted. Then the new residuals and w-test statistics are obtained, which 

can be found in Table 12. Due to 
35 1.7622<1.96aw  for point 9 in the target system, there are no 

outliers in the observations even if 
15 2.297>1.96Lw  according to the criterion for identifying 

the outliers in section 3. Therefore, the only outlier is identified. After that, the transformation 

parameters are estimated by the WTLS method. The results are presented in Table 13. By 

checking the reliability of the proposed method, the fifteen non-common points are employed to 

evaluate the performance of the proposed algorithm and RMSE (Root mean square error) is used 

to judge the influence of outlier for the coordinates. The RMSE for the data-snooping procedure 

is 0.00892, but is 0.032786 for the WTLS method with outliers. The reason is that the 

transformation parameters estimated by the WTLS method are disturbed with the outliers. 
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Table 10: Coordinates of ten common points and fifteen non-common points in both coordinate 

systems (unit: cm) 

Common point Non-common point 

Start system Target system Start system Target system 

su  sv  tu  tv  su  sv  tu  tv  

77.58677125 

28.13210239 

77.58934311 

28.12765661 

77.606496 

77.61204959 

28.10320572 

77.62038088 

28.08255946 

77.59748129    

87.246990015 

103.72201572 

103.71908529 

120.18027351 

120.160256564 

136.623478492 

154.068706679 

153.103856739 

169.529298616 

169.545714888 

34.0 

19.0 

34.0 

19.0 

34.0 

34.0 

19.0 

34.0 

19.0 

34.0 

85.0 

90.0 

90.0 

95.0 

95.0 

100 

105 

105 

110.0 

110.0 

28.17098162 

44.65580551 

61.10492273 

94.04265529 

110.52943807 

44.62795576 

61.0884887 

94.05693187 

110.52749417 

44.64684942 

61.11220165 

94.0829795 

110.5677384 

28.11643765 

44.60626576 

87.272316176 

87.245720424 

87.244663745 

87.236868084 

87.236555391 

103.714775203 

103.713279354 

103.715676958 

103.705978224 

120.159237522 

120.128950724 

120.1725203 

120.165699479 

136.617556801 

136.611885876 

19.0 

24.0 

29.0 

39.0 

44.0 

24.0 

29.0 

39.0 

44.0 

24.0 

29.0 

39.0 

44.0 

19.0 

24.0 

85.0 

85.0 

85.0 

85.0 

85.0 

90.0 

90.0 

90.0 

90.0 

95.0 

95.0 

95.0 

95.0 

100.0 

100.0 

 

 

Table 11: Residuals of observation and random vector a and corresponding w-test statistics for 

mapping rectification (unit: cm) 

Point No. 

Target system Start system 

Coordinate LjV  Ljw  Coordinate aiV  aiw  

1 tx  

ty  

0.0054641 

-0.02307 

0.66522 

-2.8086 
sx  

sy  

-0.0016239 

0.006993 

-0.58441 

2.5164 

2 tx  

ty  

-0.0048054 

0.045573 

-0.58676 

5.5647 
sx  

sy  

0.0013928 

-0.013814 

0.50126 

-4.971 

3 tx  

ty  

0.0042668 

-0.016875 

0.4667 

-1.8457 
sx  

sy  

-0.0012697 

0.0051151 

-0.45693 

1.8406 

4 tx  

ty  

-0.0040557 

0.055618 

-0.45558 

6.2476 
sx  

sy  

0.0011516 

-0.016859 

0.41444 

-6.0667 

5 tx  

ty  

-0.00098049 

-0.0021115 

-0.10244 

-0.22059 
sx  

sy  

0.00030013 

0.00064008 

0.10801 

0.23033 

6 tx  

ty  

-0.0030061 

0.0065435 

-0.31407 

0.68363 
sx  

sy  

0.000902 

-0.0019835 

0.32462 

-0.71373 

7 tx  

ty  

0.0018414 

-0.1941 

0.20717 

-21.838 
sx  

sy  

-0.00028704 

0.058838 

-0.1033 

21.172 

8 tx  

ty  

-0.0058015 

0.010432 

-0.63472 

1.1414 
sx  

sy  

0.0017438 

-0.0031622 

0.62757 

-1.1379 

9 tx  

ty  

0.0070075 

0.092938 

0.85308 

11.314 
sx  

sy  

-0.0022537 

-0.028173 

-0.81107 

-10.138 

10 tx  

ty  

6.9481e-005 

0.025052 

0.0084591 

3.0499 
sx  

sy  

-5.6045e-005 

-0.007594 

-0.02017 

-2.7326 
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Table 12: Residuals of observation and random vector a and corresponding w-test statistics for 

mapping rectification with deleting point 7 (unit: cm) 

Point No. 

Target system Start system 

Coordinate LjV  Ljw  Coordinate aiV  aiw  

1 tx  

ty  

0.005221 

0.0026575 

1.3414 

0.68277 
sx  

sy  

-0.0015825 

-0.00080753 

-1.1719 

-0.59671 

2 tx  

ty  

-0.0043552 

-0.0019646 

-1.1521 

-0.51971 
sx  

sy  

0.0013201 

0.00059699 

0.97753 

0.44113 

3 tx  

ty  

0.0041199 

-0.0014459 

0.94397 

-0.33129 
sx  

sy  

-0.0012487 

0.00043918 

0.97753 

0.44113 

4 tx  

ty  

-0.0035079 

-0.0022192 

-0.86199 

-0.54533 
sx  

sy  

0.0010633 

0.00067433 

0.78736 

0.49828 

5 tx  

ty  

-0.0010283 

0.0030519 

-0.22444 

0.6661 
sx  

sy  

0.00031166 

-0.00092718 

0.23079 

-0.68512 

6 tx  

ty  

-0.002957 

0.0014165 

-0.64539 

0.30916 
sx  

sy  

0.00089626 

-0.00043027 

0.66369 

-0.31794 

7 tx  

ty  
－ 
－ 

－ 
－ 

sx  

sy  
－ 
－ 

－ 
－ 

8 tx  

ty  

-0.0056571 

-0.0049908 

-1.2965 

-1.1438 
sx  

sy  

0.0017147 

0.0015164 

1.2698 

1.1205 

9 tx  

ty  

0.0078511 

0.0041787 

2.297 

1.2226 
sx  

sy  

-0.0023797 

-0.0012697 

-1.7622 

-0.93825 

10 tx  

ty  

0.00031337 

-0.00068396 

0.080512 

-0.17573 
sx  

sy  

-9.4978e-005 

0.00020779 

-0.070332 

0.15354 

  

Table 13: Transformation parameters estimated by the WTLS method before deleting outlier 

and after deleting outlier (unit: cm) 

Before deleting outlier After deleting outlier 

0.30309255593699 

0.00003187394065 

10.4752902610926 

0.00139656637130 

0.30313281644081 

58.46940628440629 

0.30310519134397 

0.00002566590120 

10.47510689386349 

0.00000654387860 

0.30381576309241 

58.48957855017623 

 

 

 

 

5. CONCLUSIONS 

 

The WTLS estimate of the partial EIV model may strongly be influenced by the outliers. The 

aim of this paper is to develop an approach to detect the outliers in the partial EIV model. Firstly, 

we propose a two-step iterated method of computing the WTLS estimates for the partial EIV 

model based on the standard LS theory. Then the corresponding w-test statistics are constructed 

to detect the outliers while the observations, coefficient matrix or both are contaminated with the 

outliers. If the variance factor is unknown, it may be estimated by the LMS method. Making 

using of the proposed two-step iterated method, the implement algorithm for detecting the 

outliers in the partial EIV model is proposed. Through the numerical results with the 

two-dimensional affine transformation, the identification of outliers is implemented only once 
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through the proposed procedure compared with previously approach while single outlier is 

considered. For multiple outliers, the repeated test with step by step is suggested. However, we 

still can’t discriminate that the outliers locate in the observation or coefficient matrix or both, 

which is a very open problem to be discussed in the future.  
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