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ABSTRACT

The geoid is the reference surface used to measigéts (orthometric). These are
used to study any mass variability in the Earthtesys As the Earth is represented
by an oblate spheroid (Ellipsoid), the geoid isedmined by geoidal undulations
(N) which are the separation between these surfatés determined from gravity
data by Stokes's Integral. However, this approakkg a Spherical rather than an
Ellipsoidal Earth. Here it is derived a Partial eiential Equation (PDE) that
governs N over the Earth by means of a Dirichletopgm and show a method to
solve it which precludes the need for a Spherieatte Moreover, Stokes's Integral
solves a boundary value problem defined over thelevRarth. It was found that the
Dirichlet problem derived here is defined only otle region where a geoid model
is to be computed, which is advantageous for Igealid modelingMoreover, the
method eliminates several of the sources of uriogytan Stokes's Integral.
However, estimates indicate that the errors dudigoretization are very large in
this new method which calls for its modificationo,Sere it is also proposed an
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optimal combination of techniques by means of arifiymethod and shown that it
alleviates the uncertainty in Finite Difference Med. Moreover, a rigorous error
analysis indicates that the Hybrid method propokece may well outperform
Stokes's Integral.

Keywords: Geoid Modeling; Ellipsoidal Dirichlet Problem; Fi@ Difference
Method; Stokes's Integral.

RESUMO
O gedide é a superficie de referéncia utilizada parmedire altitudes (ortométrica).
Estas sdo utilizadas para estudar qualquer varidgdmassa no sistema terrestre.
Como a Terra é representada por um esferdide dblgilipsoide), o gedide é
determinado por meio de ondula¢des geoidais (N)sdoea separacdo entre essas
superficies. N é determinado a partir de dadostg@enais pela integral de Stokes.
Todavia, esta abordagem considera uma Terra esféocinvés de elipséidica.
Neste artigo € deduzida uma equacéao diferencialgddsigla em inglés PDE) que
governa N ao redor da Terra por vias de um Probldmairichlet. Também
mostra-se aqui um método para resolver esta PDHligpensa a necessidade de
uma Terra esférica. Além do mais, a Integral dkedtaesolve um problema de
valor de contorno definido por toda a Terra. Desicede que o Problema de
Dirichlet aqui proposto esta definido apenas agdoda regido de calculo o que é
vantajoso para modelamento local do gedide. Alémmadds, o método elimina
diversas das fontes de incertezas presentes ngrdhtde Stokes. Todavia,
estimativas indicam que o erro devido a discrefima€ muito grande neste novo
método o que pede por modificagdes. Sendo assini,também propde-se uma
combinacdo 6tima de técnicas por meio de um métbdodo. Mostra-se que que
este método hibrido atenua as incertezas do mésiDiferencas Finitas. Além do
mais, uma rigorosa analise de erros indica quetoduéibrido aqui proposto pode
bem desempenhar melhor do que a Integral de Stokes.
Palavras-chave: Modelagem do Gedide; Problema de Dirichlet no Biigs;
Método das Diferencas Finitas; Integral de Stokes.

1. INTRODUCTION

Present day needs for highly accurate geoid mddels driven many attempts
to modify Stokes’'s Integral and to compute elligsdi corrections for it
(MARTINEC and GRAFAREND, 1997; ARDESTANI and MARTEC, 2003;
HIPKIN, 2004; NAJAFI-ALAMDARI et al., 2006) whichan be as big as 1m in
some places (MARTINEC and GRAFAREND, 1997; NAJAHRLAMDARI et al.,
2006). Current high resolution geoid models do aatsider these corrections and
show decimeter big uncertainties, e.g. JGEOID200igh wvi7cm for Japan
(KUROISHI, 2009; ODERA et al., 2012) and USGG200¢hvas much as 32.1cm
for US (WANG et al., 2011). Users of geoid modedguire at least a decimeter
quality as for oceanographers and geophysicistsR&LEHI, 2009) or a 1cm
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336 On accurate geoid modeling derivation of Dirichlet.

quality as for geodesists (SANSO and SIDERIS, 20¥®PLEY et al., 2004) which

is hardly attainable without methods of improveduaacy. However, the ellipsoidal
corrections do not eliminate the error from theesptal approximation but attenuate
it. Moreover, they still have the following errotsniting the area of integration to a
small spherical cap (truncation error), approximgtihe normal derivative by a
radial or other derivative, Earth's topography ttetise to exist masses outside the
geoid, discretization of the input gravity and pagption of the uncertainties of the
input gravity.

The Boundary Value Problem (BVP) from which Stokesitegral is derived
is defined over the whole space on and outsidg#oéd and over the whole geoid.
Consequently, its solution requires gravity datardtae whole Earth to provide N at
a single point. The Dirichlet problem derived heréefined only over the region of
computation. Thus, besides computing N directly tha ellipsoid, its solution
requires gravity data only over the region of iattr In solving a Dirichlet problem
in the Ellipsoid these 3 major sources of errorl W eliminated: the spherical
approximation, the truncation of the integral anel Earth's topography.

A Dirichlet problem whose PDE governs N over theidds derived here and
it is shown how to numerically solve it by usingetfrinite Difference Method
(FDM). However this method can handle consideralalsgge matrices which
increases its computational cost. Therefore, &l&® proposed a modification on
FDM (FDM with subgrids, FDM2) that allows the contgtion of geoid models of
large regions by keeping the matrices involved ainall and constant size. It will
be shown here that FDM has large errors due taetization so it is also proposed
a Hybrid method to alleviate those uncertainties.dErive it it will be needed a
Spherical Dirichlet Problem which will also be dexil here. The Hybrid method as
opposed to FDM yields subcentimetric differencesnir Stokes's Integral.
Moreover, an error analysis will be developed whioticates that the Hybrid
method may well outperform Stokes's Integral.

2. DERIVATIONS OF STOKES'S INTEGRAL AND DIRICHLET
PROBLEM
Stokes’s Integral is derived from the fundamentgud&ion of Physical
Geodesy (HOFMANN-WELLENHOF et al., 2006):

%—%%T+Ag:() (D)
where T is the disturbing potentidlT/ch is its vertical gradienty is the normal
gravity, dy/oh is its vertical gradient andg is the gravity anomaly (reduced to
remove the effect of masses outside the geoid).(Eqgis used as a boundary
condition for the PDE given by Laplace’s equati®his constitutes the third BVP
of potential theory. The BVP is solved for T andisNderived from it by Brun’'s
formula (HOFMANN-WELLENHOF et al., 2006):
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N = g )

Stokes’s Integral makes a spherical approximatioftq. (1) to then compute
an integral solution for the BVP considering theolehspace outside the geoid. To
derive the Dirichlet problem for FDM it is consiger the generalized Poisson’s
Equation in ellipsoidal-harmonic coordinates ¢u)) for the gravitational and the
normal potentials to derive the Laplacian of T, ethinside the Earth is as follows
(SANSO and SIDERIS, 2013y {s the complement of the reduced latityijlé.e.
=n/2 —v , andA is the geocentric longitude):

(1/2+E2) 6?2T . arT 9T 1 9T w?+ E?cos?29 92T -

R e e T 53 ae = —4mGo (3
ou2 " ou " 902 tand 90 (u? + E?)sin? 0 ON2 rGe )

5y

where u is lesser than or equals b, B=§§'?is the linear eccentricity, with a being

the semi-major axis and b the semi-minor axis ef Hilipsoid of revolution, G is
the gravitational constant apds the Earth’s density.

2.1 The Dirichlet Problem PDE

The PDE that describes T over the Earth, and thals]y as a function of T
and its partial derivatives in andA can be derived from Egs. (1) and (3) after
expressing Eqg. (1) in ellipsoidal-harmonic coortisau,v andA, for details refer to
Appendix A. This PDE is as follows:

2T or o*T
it N@W)-——+CN(@) - —= N@)-T = GN(9,
59z + BN(@) - 55+ CN(@) - 5 + FN@) - T = GN(9, ) (€]
where BN¢), CN(), FN®), GN(v, A) are as follows:
1
BN(¥) = —— 5
- tan v -
) ) u? + E? cos?
'NO) = ——+—5—
o) (u2 + E2)sin?4) @
FN@®) = (u2+ EXHF%) — 2u - F(¥) %
. 3 ; 5 5 OA¢ ]
GN(9,)) = [-(&® + E>)F(9) + 2u] Ag + (> + E2) =2 —anGo (8)

oh

with u=b, FO)=—(1#)-(@y/ch) (FQ) is given explicitly by Eq. (A.2)). Furthermore,
for the Earth 4Gp is very small and can be neglected.
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338 On accurate geoid modeling derivation of Dirichlet.

This PDE together with its boundary condition, whis to know T or N
(geoidal undulation) at the boundary of the surfabere it's been applied, defines
an Elliptic BVP with a Dirichlet boundary conditiohis, in turn, defines a
Dirichlet problem, which can be solved numericéliye.g. FDM.

3. NUMERICAL SOLUTION OF THE DIRICHLET PROBLEM BY F DM
AND FDM2
To obtain T by FDM the partial derivatives of T mie expressed by their
equivalent form in finite differences (DIEGUEZ, Z)01In other words, to make the
following substitutions—considering data on a djid), 1<j<J-1 and 1< i< |-1:

PT _ Thiwr — 2Ty + Tho

o2 A9? ©)

0T Tiv1:—2T5; +Ti_1;

T A c10)
or o rl"i*l — Ii»i (ll)

a0 A
whereAX andAv are the grid spacing.
Substituting Egs. (9), (10) and (11) in Eqg. (4)ldgethe final expression for
FDM:

AN (1+ BN -A9) - Tjip1 + AN - Tjiq +
CN -A9? Ty 1+ CN - A9 - Tj_y 4+
(FN-A9?- AN —2AX — BN - A9 - AN —2CN - A9?) - T, =
GN-A9?-AX (12)
where BN, CN, FN and GN are given by Egs. (5), (B).and (8).

T can be determined from Eq. (12) if gravity andeslg are provided on a
grid and T or N are provided on the boundary of tnid, i.e. at j=1, j=J, i=1, i=l.
The boundary values of T or N can be determinedspyit levelling (HOFMANN-
WELLENHOF et al., 2006; SANSO and SIDERIS, 2013)glabal geopotential
model (PAVLIS et al., 2012; PAIL et al., 2011, 2Q18atellite altimetry if the
region is over the seas (HOFMANN-WELLENHOF et #0Q06; SANSO and
SIDERIS, 2013) or the remove-compute-restore teglni (HOFMANN-
WELLENHOF et al., 2006; SANSO and SIDERIS, 2013; EXA et al., 2012)
which can be based on ellipsoidal corrections (MMEC and GRAFAREND,
1997; ARDESTANI and MARTINEC, 2003; HIPKIN, 2004; ANAFI-
ALAMDARI et al., 2006). This way, T is determinegim the linear system derived
from Eq. (12) by solving it iteratively by e.g. #¢’'s method. However, for small
grids one can get very large systems, e.g. a 1nidno§a 4 by 4 region delivers a
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linear system on more than 57 thousand variableghwin double precision

requires more than 24.3 Gigabytes of Random Acesmddy (RAM). This can be

big for a personal computer to handle. Therefois firoposed a Finite Difference
Method with subgrids (FDM2) to compute geoid modslsegions as big as desired
while keeping the linear system as small as desF&iM2 is best suited for high

resolution geoid modeling. For further details @iMR refer to Fig. 1.

3.1 Short Remark on Remove-Compute-Restore Techniguand FDM

In FDM, terrain reductions are not mandatory beedhs Dirichlet problem is
derived from Poisson's equation as opposed to S®kaegral. Moreover for FDM
and FDM2 the long wavelengths need not be remowvethuse the Dirichlet
problem is defined only over the region of compotats opposed to the BVP from
which Stokes's Integral is derived which is define@r the whole Earth. Therefore,
FDM does not require implementation of a remove-{ota-restore technique.

Figure 1 — How FDM2 works. The grid (big squaredligded in subgrids (small
squares, as many as desired, here 16 for the $askaglicity). FDM is applied
individually to each subgrid instead of a singla an the grid. In addition, T or N

must be known at the boundary of each subgrid.

Bol. Ciénc. Geod., sec. Artigos, Curitiba, v. 802, p.334-353, abr-jun, 2014.



340 On accurate geoid modeling derivation of Dirichlet.

Figure 2 - Region used for assessment of geoid lmgd@methods. The region
where the geoid models were computed is represémtéttk solid black square.
The island in the center corresponds to Japan.
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Figure 3 - Input gravity anomalies usédthe input data spans a larger area than the
one to be modeled because boundary points werewtethpy Stokes’s Integral
which requires a spherical cap, here 3 arc-degtdDointerval 1.0mgal.
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342 On accurate geoid modeling derivation of Dirichlet.

Figure 4 - Geoid model computed by FDM2 in a 1nrid.g
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Figure 5 - Map of the differences between FDM2 Stakes’s Integral computed in
a 1min grid.
144 145" 146° 147

;e

36

33"

144 145° 146° 147"

-450~375-300=-225-1580 =75
differences (cm)

Bol. Ciénc. Geod., sec. Artigos, Curitiba, v. 802, p.334-353, abr-jun, 2014.



344 On accurate geoid modeling derivation of Dirichlet.

Figure 6 - Histogram of differences between FDM &takes'’s Integral (cm). The
frequency is represented by means of probability their sum equals 1.

Dnfferences 5 Frequency

Table 1 - Differences between FDM and Stokes'gjhaleMax, min, mean and sd
are the maximum, the minimum, the mean and thelatadrdeviation of the
differences between the techniques. Values armin ¢

Resolution Max Min Mean sd
1 arc-deg 0.0 -96.7 -69.0 132.2
1 arc-min 0.0 -492.0 -189.7 121.6

4. COMPARISON OF STOKES'S INTEGRAL WITH FDM AND FDM 2

Using FDM and FDM2 it was computed geoid modelsaofidegree and a
1min grid respectively using ship-borne gravity aditom Japan Oceanographic
Data Center (JODC) and gravity anomalies derivednfrsatellite altimetry by
Andersen et al. (2010). For the Fortran 90 cod#¢tewisee Del Rio (2013a) for the
code concerning FDM and Del Rio (2013b) for thee@dncerning FDM2. The
whole data set and computer programs built mayrbeiged by email upon request.
The region is located in the Japanese seas and 8gan 37N and 144 - 147E,
see Fig. 2. This region is known for the Kuroshimrent which is as strong as to
cause variations on the geoid (ADJAOUT and SARRAILE97).
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The differences between FDM and Stokes's Integealdisplayed in Table 1
for the 1deg and the 1min grids. It can be obsethatl an increase in resolution
improves the quality of the grid as given by thansiard deviation (sd). In both
grids, the differences were very large, much greti@n the decimeter. However, it
is known that the sd of Stokes's Integral over daga lands is subdecimetric as
measured by Kuroishi (2009) and Odera et al. (20LR)s, this large deviation is
mainly due to the errors of discretization of inpaihd propagation of input
uncertainties in FDM, see Eq. (A.5), Appendix B.

Importantly, for the 1min grid the computation afch grid for N was not
possible by FDM due to the large number of varistidat only by FDM2 (FDM2
was designed for the case when FDM cannot be a)pkM?2 was applied with
squared subgrids sizing 1deg. In total, 9 subgnidee required. The 1deg grid has
too few points to yield a reasonable implementatb®DM2. Therefore, the 1deg
grid was computed only by FDM and the 1min grid wasputed only by FDM2.

The map of the grid concerning the input gravityprmalies is displayed on
Fig. 3. The geoid model computed in a 1min grichgdFDM2 is displayed on Fig.
4. The map of the differences between FDM2 ande&tskntegral in the 1min grid
corresponds to Fig. 5. In the difference map itlbambserved significant deviations
between the methods. The deviation is null at thendary of each subgrid and
generally increases towards their center. Morecagslot of the histogram of the
differences is displayed on Fig. 6. As given byl& -kurtosis, it indicates that the
differences conform to a uniform distribution.

To alleviate the large uncertainties in FDM it vk proposed here a Hybrid
Method. Prior to its formulation it is necessary derive a Spherical Dirichlet
problem.

5. DERIVATION OF A SPHERICAL DIRICHLET PROBLEM

Considering Poisson's equation in spherical coatds1and the fundamental
equation of physical geodesy in spherical approtionait can be derived a
Spherical Dirichlet problem that will be used ttewiate the uncertainties in the
Ellipsoidal Dirichlet problem. The equations readfalows:

arT 2 ) N
erETJrAg:U (13)

LPT 9T &PT 1 9T 1 PT
‘ o0p 9T

— - — e — A (] 14
or? ar V2 tand 99 sinZ 4 92 a 4

The Spherical Dirichlet problem can be derivednraaalogous way to that of
the Ellipsoidal Dirichlet problem. Its Partial Déifential Equation (PDE) reads:

92T T 8T
?  LBN®) - +CONW®)- S

D02 By, g T FN(@) T =GN, \) (15)
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where BNg), CN(v), FN©), GN(u , 1) are as follows:

BN(9) = 16
o tan v (1o}

CN@) = — (17)

) ~ sin2W
FN(S) = 2 (18)
LONA i _
N, ) = B2Z29 _ 4ncp (19)
or

for the Earth 4Gp is very small and can be neglected.
Its finite difference expression is similar to thadt the Ellipsoidal Dirichlet
problem and reads:

AR (1+ BN -AY) - Tj_,‘.,.] =} AN2 - Tj‘_i_1+
ON-A® - Tpys+CN - AS - Tj_y i+
(FN - A% . AX2 —2A)2 — BN - Ad - AX2 — 2C'N - Ad?) . Ths =

GN - A? . AN (20)

where BNg), CN(v), FN©), GN(v, A) are given by Egs. (16), (17), (18) and (19).

6. THE UNCERTAINTIES INVOLVED IN EACH TECHNIQUE FOR
GEOID MODELING
Here it will be derived expressions that give theetN at a point as N
computed by a technique plus uncertainties dueath @rror source. In symbols,
denoting the N computed from an Ellipsoidal Dirigthproblem by Nove, from a
Spherical Dirichlet problem by fNys and from the remove-compute-restore (RCR)
technique by Ncr it follows:

N = Nppug + 21 + &
;\"7:;\"YFDA.‘\[S+.:'E+.:'1$':‘.I2 (21)

N = Nrcr + T + €E + ETopo + €1 + €2

whereg; ande’; are the errors due to the approximation of nomhesivatives to the
ellipsoid by radial derivatives, ande’, are the errors due to discretization of input
and propagation of input uncertaintiess is the error due to the spherical
approximation done to the fundamental equation ofsizal geodesysrop, is the
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error due to the topographical masses outside ¢oédgander is the error due to
truncation of Stokes's Integralerop, and er are alleviated because of the
implementation of RCR techniqu&: ande; are considered equal or very similar for
both Nycr and N:pys because the same approximation is done in bo#scas

7. ALLEVIATION OF THE UNCERTAINTIES IN FDM BY AN OP TIMAL
COMBINATION OF TECHNIQUES

The uncertainty due to discretization of input apbpagation of input
uncertainties can be alleviated if N is computedHgyfollowing formula:

N = Nppue — (Nepars — Nror) + 21 + Topo + £, + €2 (22)

Note that Eq. (22) gives N as a combination frontdinputed by several
techniques. This optimal combination shifts theedue to discretization to that of
Stokes’s Integral, which is much smaller. Moreoeer, erop, ande’; are small, with
et andergp, being alleviated by RCR’s implementation and tame being possible
for ¢’y in future. So, the error of this new method is mhadue to discretization of
input and propagation of the uncertainties of thgut in Stokes’s Integral, which
are much smaller compared to FDM. Hereatfter, | vafer to the N given by this
method as Nypria, i-€.

Nyyria = Nrpme — (NFpys — Nrer) (23)

Figure 7 - Geoid model computed by the Hybrid mdtima 1min grid.
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Figure 8 - Map of the differences between the Hylbmethod and Stokes’s Integral
computed in a 1min grid.
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Figure 9 - Histogram of differences between the titybmethod and Stokes’s
Integral (cm). The frequency is represented by medrprobability, i.e. their sum
equals 1.
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Table 2 - Differences between the Hybrid Method 8twkes's Integral. Max, min,
mean and sd are the maximum, the minimum, the raedrthe standard deviation
of the differences between the techniques. Valuesecm.

Resolution Max Min Mean sd
1 arc-min 0.0 -2.86 -1.30 0.83

8. COMPARISON OF THE HYBRID METHOD WITH STOKES'S
INTEGRAL
It was computed N in a 1min grid over®3437N and 144 - 147E using the
same input grid of gravity anomalies. In this regi,,,iq and the difference Nyrig
— Ngrcr Were computed. The differences are dislayed orleT2bKurtosis is -1.20
which indicates that the differences again confdoma uniform distribution.
Moreover, the difference may be expressed as fatiow

’

Nuybria — Nrcr = g — (5) — €1) " eg (12)

so that the difference is a measure of the unceytaiue to the Earth’s ellipticity
that is usually not accounted for in RCR. From E(® and (10) Nyrid's
uncertainty is expected to be inferior to that dRGCR ase; and ¢’; may be
considered as approximately equal,f has the advantage over Stokes’s Integral
of eliminating eg and possibly eliminating’; in future. The maximum observed
difference is very small in magnitude and is below centimeter which is
remarkable. Moreover, the differences were agailh atuthe boundary of each
subgrid and tended to increase towards their cemtesr same trend was observed
here for the Hybrid method. The geoid computedheyHybrid method is displayed
on Fig. 7 and represents the geoid over the regiooh more accurately than the
sole FDM. The difference map is displayed on Fig.TBe histogram of the
differences is displayed on Fig. 9.

9. CONCLUSIONS AND FUTURE WORK

In this article the formulations of a Dirichlet fmlem to compute geoidal
undulations and its numerical solution by FDM wepeoposed. The main
advantages are the elimination of the errors dughto neglection of Earth's
flattening, truncation of Stokes's Integral and ferth's topography. The major
drawback of this approach is the error due toithédd density of the input gravity.
Moreover, an optimal combination of techniques ywasposed here and named
Hybrid method.

Boundary points in FDM/FDM2 can always be determibg Stokes's Integral
in a standard remove-compute-restore procedure giblzal geopotential model.
The remaining points are the vast majority and bandetermined by FDM or
FDM2. Moreover, for large regions the computatiérm geoid model by FDM may
become difficult thus highlighting the usefulne$$BM2.
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However, FDM and FDM2 are not as yet alternativeshighly accurate geoid
determinations in this time when a 1cm geoid idgrdds This is mainly due to the
error due to discretization of input and the pragn of uncertainties in the input
which were shown to be much larger in FDM and FDik&n in Stokes's Integral.
Therefore, future work should concern with the timent of such uncertainties in
order to make FDM and FDM2 comparable or even b#tan Stokes's Integral just
in the way that was done here by means of the Hyhgthod. Afer all, an increase
in resolution decreased the uncertainty of FDMit $® expected that in future, with
more gravity data of higher quality and denser cage available, the overall
uncertainty of FDM will decrease. Moreover, FDM aRBDM?2 eliminate 3 major
sources of uncertainty in Stokes's Integral.

The error analysis was derived here and it wasddhat the uncertainty in the
Hybrid method is mainly due to the discretizatidrinput and propagation of input
uncertainties in Stokes's Integral because othegrtainties cancel each other or are
comparably small. This led to very small unceriesmtand a remarkable agreement
with Stokes's Integral as opposed to FDM.

The differences between the Hybrid method and Stekategral are due to
the Earth's ellipticity so that it is expected ttta¢ use of ellipsoidal corrections in
future work may further improve fdg and consequentely ¢ as well. Moreover,
these differences show that for a centimetric geofpherical Earth should not be
used.

Further suggestions for future work: if the reqdidata is available, it would
be good to compute a geoid model in land in ordezompare results with geoidal
undulations determined by spirit levelling. Also ogo would be to compare
FDM/FDM2 with Stokes's Integral on ellipsoidal aaction in order to improve
accuracy of boundary points and slightly improverayl accuracy of geoid model.
To derive a PDE for the Dirichlet problem basedaomore accurate approximation
of the vertical gradient of T, e.g. using the ndrimathe Ellipsoid, is the final
suggestion for future work.

Furthermore, once the error due to the Earthstiglify is similar for Nycg and
Nepms techniques, from the error analysis developed Itei® expected that the
Hybrid method will outperform Stokes's Integral efiwould be a step towards a
centimetric geoid.
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APPENDIX A — DETAILS ON THE DERIVATION OF DIRICHLET
PROBLEM PDE

To express Eq. (1) in ellipsoidal-harmonic coortisathe vertical gradient of
T will be approximated by its derivative with resp& u as follows

T /Oh = OT Jon =~ OT | Ou

r2 — E2sin’ v
wheredT/on denotes the normal derivative measured alonguheard unit normal
to the ellipsoid.

Hence,
%+F(:))-T+Ag:0 (A.1)
where F{) is given by:
N Y 0 N
F() = - [ (A\[ -+ ;\"‘) + 2u ] (A2)

where M = & [b(1+&’cosv)*)] and N = & [b(1+ecosv)?. In M and N (these
are the radius of curvature in the direction of teridian and the normal radius of
curvature in the direction of the prime vertical)is the ellipsoidal latitude and is
the second eccentricity, wherese(-b%)"?/b.

Consequently, by derivating Eq. (A.1) with respect yields:

35 = F29)-T + F(¥) - Ag — ‘)(i" (A.3)
where dAg/ou is approximated by the vertical gradient of thavgy anomaly
OAgloh or its radial derivative with respect to the Bartcenter of mass. The PDE
for the Dirichlet problem is obtained by substibgtithe first and second derivatives
of T with respect to u from Egs. (A.1) and (A.3)Hq. (3).

APPENDIX B — THE ERROR INTRINSIC TO STOKES'S INTEGR AL
A major source of error that is present in geoidlelimg is the discretization

of the input and the propagation of the input exrdt is considered that the error
due to discretization/propagation is approximatedyial for all techniques. Thus,
letting N be the true geoidal undulation andbid the computed geoidal undulation
yields:

fv“;{okes = -‘r\‘r.;'fokes =+ EEJ +e&1+ &2

(A4)

Nepym = Nppu + €0+ &5
whereg, is the error due to approximation of the normaiwigive of T bydT/ou,
€'y is the error due to approximation of the normalivdgive of T by the radial
derivative,g; is the error due to the Earth’s flattening anah¢ation,s, ande’, are

the errors due to discretization of input gravitpdapropagation of overall
uncertainty in gravity measurements.
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Letting AN = Nrpm—NsiokesWith Nsioxkes=Nrpm implies:

AN =g+ (g —€n) + (2 — &5) ™ e + (82 —€3) (A.3)
Thus, by comparison with FDM/FDM2 the uncertainty idue to
discretization/propagation can be estimated fadgording to Eq. (A.5) becausg
— go is small compared to the other terms.

(Recebido em outubro de 2013. Aceito em fevereir@@{L4).
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