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ABSTRACT 
Terrain-referenced navigation (TRN) techniques are of increasing interest in the 
research community, as they can provide alternative navigation tools when GPS is 
not available or the GPS signals are jammed. Some form of augmentation to cope 
with the lack of GPS signals is typically required in mobile mapping applications in 
urban canyons and is of interest for military applications. TRN could provide 
alternative position and attitude fixes to support an inertial navigation system, since 
such systems inevitably drift over time if not calibrated by GPS or other 
methodologies. With improving imaging sensor performance as well as growing 
worldwide availability of terrain high-resolution data and city models, terrain-based 
navigation is becoming a viable option to support navigation in GPS-denied 
environments. Furthermore, the feedback from the imaging sensors can be used 
even during GPS availability, which increases the redundancy of the measurement 
update step of the navigation filter, enabling more reliable integrity monitoring at 
this stage. The relevance of TRN to mobile mapping applications is twofold: (1) the 
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process of obtaining real-time position and attitude fixes for the navigation filter is 
based on feature extraction, and, in particular, on the capability to separate the static 
and dynamic objects from the image data, and (2) the use of already available 
terrain data, including surface models (DSM), raster or vector data in CAD/GIS 
environments, such as city models, can effectively support the extraction processes. 
These two tasks could overlap, although the separation of the static and dynamic 
objects should work without any terrain data, and in fact, this is, to a large extent, 
the idea behind the removal of vehicles (moving objects) from imagery. The overall 
TRN concept, where LiDAR and optical imagery are matched with the existing 
terrain data is discussed and initial performance results are reported. 
Keywords:  Navigation; Feature Matching; Kalman Filtering; LiDAR. 
 
 
1. INTRODUCTION 
 In GPS/INS (Global Positioning System/Inertial Navigation System) 
navigation systems, the GPS measurements are used to correct and calibrate the INS 
(or IMU) typically via a conventional Kalman filtering algorithm. However, 
satellite navigation signals are extremely vulnerable to interference, primarily due to 
their low power. Unintentional interference sources include broadcast television, 
mobile satellite services, ultrawide-band communications, over-the-horizon radar 
and cellular telephones (Carroll et al., 2001). As soon as GPS measurements are 
lost, the INS begins to drift as there are no positional fixes for sensor calibration. 
For example, aircraft-grade INS can typically maintain horizontal position accuracy 
within 100 m through GPS outages of more than 10 minutes. However, lower cost 
INS, common in guided weapons, unmanned air vehicles and general aviation 
(civilian) aircraft, can only maintain this accuracy for a few minutes at best. To 
attain robust navigation in a GPS challenged or jamming environment, alternative 
navigation systems are required, such as terrain-referenced navigation (TRN) 
techniques (Runnalls et al., 2005). 
 The potential of laser range scanners for supporting navigation was 
recognized in studies (Campbell et al., 2005; Haag e. al., 2006), and a laser range 
scanner based navigation system for aircraft guidance was presented in Haag e. al. 
(2006). Their referencing is based on matching laser points from the onboard 
LiDAR (Light Detection and Ranging) system to a stored DEM (Digital Elevation 
Model). They use the criterion of minimum SSE (Sum of Squared Error), which is 
very similar to MAD (Mean Absolute Deviation) of TERCOM (Terrain Contour 
Matching, conceived by Chance-Vought in 1958), for a referencing method. 
Bergman (1999) used the point mass filter and nonlinear Bayesian approach for 
aircraft terrain navigation. Madhavan and Messina, (2003) introduced an unmanned 
ground vehicle navigation system using 3D LiDAR data matching which applies an 
ICP (Iterative Closest Points) algorithm, a technique introduced by Besl et al., 
(1992) for 3D shape registration. Toth et al., (2008) applied ICP to recover aircraft 
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trajectory from distorted LiDAR data. Habib et al., (2006) suggested an automatic 
surface matching method which uses ICP and MIHT (Modified Iterated Hough 
Transform) for registering LiDAR data. Rusinkiewicz and Levoy, (2001) provided 
a speed comparison of ICP convergence with respect to different sampling, 
matching, weighting methods, etc. 
 Research on the optical image based navigation can be classified into 
feature-based or optical flow-based approaches (Veth and Raquet, 2006). The 
feature-based technique determines the corresponding distinct invariant features 
between a pair of image frame sequences or the current image frame and the 
reference to estimate the relative motion. The optical flow-based method tries to 
determine the relative velocity and angular rates with the restriction of the small 
motion image difference. Since the SIFT is quite efficient in finding invariant 
features and exhibits robust performance, there has been intense research on 
exploiting SIFT for image-based navigation (Frank-Bolton et al., 2008; Lopez et 
al., 2008; Wendt et al., 2008; Liu et al., 2008). Fletcher et al. (2007) chose the SIFT 
in order to improve feature tracking for the fusion of optical and inertial sensors, 
and Strelow (2004) exploited SIFT matching to limit drift in long-term motion 
estimation.  
 The paper is structured as follows: first, a general characterization of various 
sensors available to support a tightly coupled navigation solution is provided. 
Second, an overview of the integrated system is discussed, indicating the utilization 
of multiple sensors to support updates to the inertial system. The third section 
discusses a series of algorithms currently being researched at the SPIN Laboratory 
to derive positional and/or attitude information from sensor data that can be used as 
fixes in the navigation filter. In the final section some recent implementations of the 
methods outlined in section three are demonstrated, followed by a brief summary. 
 
2. SENSOR CHARACTERIZATION  
 There are many kinds of remote sensors used for acquiring terrain features. 
Conventional terrain-based navigation methods, such as TERCOM (Klass, 1974) 
and SITAN (Hostetler and Andreas, 1983) have used radar altimeter and barometric 
altimeter that measure height above ground level and reference height above the 
mean sea level respectively. With improving imaging sensor performance as well as 
growing worldwide availability of terrain high-resolution data, a variety of sensors 
has been available. Sensors can be classified depending on the sensing principle: the 
vision sensor (camera) and the range measurement sensor (laser or RADAR). Each 
type of sensor can be used separately or a combination of the systems can also be 
used because each sensor has advantages and disadvantages for supporting 
navigation. For example, the range measurement sensor cannot acquire spectral 
information, but the vision sensor does. In contrast, without enough light a vision 
sensor cannot provide reliable features while the range measurement sensor has the 
capability to generate a dataset. 
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2.1 Optical Sensors 
 The passive vision sensors for supporting navigation should provide reliable 
position and attitude fixes for the navigation filter when sufficient ambient light is 
available. The position and attitude estimation algorithms that have been well 
established over the past require that the cameras are precisely calibrated. Since 
there are a large variety of cameras available, the important aspects to choose a 
camera are the sensor type, resolution, the number of spectral bands, frame rate and 
interface. For position and attitude estimation, the perspective projection type 
camera (frame) is preferred because the linear push-broom line scanner has weak 
geometry. In general, the image resolution should be high enough to meet the 
navigation accuracy requirements but low enough for efficient data processing. 
Color/multi-spectral sensors are often required to obtain rich spectral information 
for terrain feature extraction. The highest performance cameras currently available 
are the large-format digital aerial cameras, such as the UltraCamXp (Vexcel), DMC 
(Intergraph) and ADS80 (Leica Geosystems). The drawbacks of using these 
systems exclusively for the purpose of navigation are the size and expense. The 
medium-format mapping frame cameras, such as the RCD105 (Leica Geosystems), 
DSS (Applanix), AIC (Trimble), etc., are also capable of delivering relatively high 
resolution imagery, as these mapping cameras, if precisely calibrated, can provide 
accurate imagery with better than 20 cm resolution (GSD) at 1000 meter flying 
height. There are many choices of megapixel industrial cameras available, such as 
real-time machine vision cameras with smaller image sizes, such as Pulnix, Basler, 
PixeLINK’s PL-A/B series, Sony XCL/XCD series, Allied GC/GE/GS series, etc. 
 
2.2 Ranging Sensors 
  There are many kinds of range measurement sensors: SAR, altimeter, sonar, 
LiDAR and flash LADAR (Laser rADAR, a widely used acronym in military 
terminology). Among them, LiDAR and Flash LADAR will be discussed here 
because LiDAR is the most widely used range measurement device while Flash 
LADAR is relatively new but has the potential for supporting navigation. 
  LiDAR is an optical ranging system that involves the accurate measurement of 
the time of flight (TOF) of a very short but intense pulse of laser radiation to travel 
from the laser ranger to the object being measured and to return to the instrument 
after having been reflected from the object. It can be installed on airborne and 
terrestrial platforms and is widely used for collecting explicit 3D data very precisely 
and efficiently. LiDAR can be classified according to the scanning mechanism and 
sensor platform (Shan and Toth, 2008). Most of the airborne LiDAR systems, such 
as ALTM (Optech) and ALS (Leica Geosystems) families, employ the bidirectional 
scanning mechanism yielding sawtooth pattern point data. A Palmer scan showing 
an elliptical scan pattern is used in NASA’s ATM, Airborne Oceanographic LiDAR 
(AOL) and some models in the TopoEye series. For the terrestrial laser scanners for 
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navigation and SLAM (Simultaneous Localization And Mapping), SICK products 
are widely used. Recently Velodyne introduced the HDL-64E system, which with 
its 64 sensors can achieve a high data rate and was effectively supporting 
autonomous navigation during the DARPA Urban Challenge. 
 Flash LADAR is an active 3D-image-acquiring sensor which provides the 
range, azimuth and elevation of each set of measurements to create a 3D scene. The 
resulting output is a triple of Cartesian coordinates for each pixel in the image, 
enabling the direct reconstruction of the object space in 3D. Its potential for 
navigation was demonstrated in previous research (Markiel et al., 2008; Haag et al., 
2008). The most used commercial systems are the SR3000/4000 (SwissRanger) and 
Flashlamp (Advanced Scientific Concepts Inc.). One of the significant advantages 
and disadvantages of flash LADAR is the speed of data collection (30–3 frames per 
second) and the relatively short range (3–30 meters), respectively. Flash LADAR 
technology currently offers moderate image resolution (100–200 by 100–200 sensor 
size) and suffers from ambient radiation, as the SNR is very low due to the 
requirements for eye-safe operation. 
 
3. NAVIGATION COMPONENT 
 Figure 1 provides an overview of the conceptual implementation of the 
navigation filter, which extends the basic system of the well-known GPS/INS 
tandem of sensors, tightly coupled via an Extended Kalman Filter (EKF). The 
inertial system provides short-term information relative to position, attitude and 
velocity, while the GPS updates enable the system to correct for the inevitable drift 
in the inertial sensor. Thus, the integrated solution results in excellent performance. 
 When GPS updates are not available, updates are instead provided to the EKF 
by means of a positional/attitude solution derived from imagery and/or terrain 
reference information. If GPS remains available, the imagery/terrain position 
creates a redundancy in the information set, and thus the opportunity to enhance the 
resulting solution may then support a stronger navigation solution and improve 
mapping performance. 
 The OSU AIMS-Pro® is a custom software system developed by The Center 
for Mapping at The Ohio State University which expands the traditional GPS/INS 
tightly coupled integration model to enable the utilization of other sources of 
position and orientation information within the basic traditional schema. The 
software enables navigation solutions to be derived for both aerial and ground-
based navigation platforms and has the ability to generate both loosely and tightly 
coupled solutions. It currently handles a number of commercially available inertial 
units, such as the H764D, HG1700, LN100, LN200, xSens and Crossbow devices; 
the system can easily be configured to handle other inertial systems with minimal 
effort. Additionally, the system can integrate a wide variety of other navigation 
related devices, such as digital compasses, step length sensors, or odometers. 
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Figure 1 - The conceptual structure of the OSU AIMS-Pro® software system. 
 

 
  
 Time synchronization is essential for any multisensory system, as it forms the 
basis for data integration and fusion by providing accurate co-registration in time 
and, subsequently, in spatial domains. Generally, GPS time-tagging of all sensory 
data is implemented at the data acquisition level. In the context of mobile mapping, 
there are two aspects of time synchronization, depending on whether relative or 
absolute TRN is considered. If simultaneously or near simultaneously acquired data 
are used for TRN, then the static and non-static objects should be first identified 
during processing, so the matching uses only the static features, common in 
consecutive observations. For example, building facades scanned by LiDAR are 
static objects, and subsequently are ideal for TRN, while data such as moving 
vehicles scanned should be removed from the data set. When existing terrain data 
are used for TRN, the time difference between two acquisition times is generally 
large, typically measured in years, and thus the object scene could have changed a 
lot. This is less an issue for open areas, as the terrain is not likely to change, but it is 
important for urban areas experiencing rapid changes. Therefore, the use of TRN in 
absolute context requires additional sophistication to cope with the changes between 
the current and past data. 
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4. MATCHING COMPONENT 
 
4.1 General Discussion 
 Regardless of data acquisition method, the resulting image data stream 
provides a temporally spaced set of measurements, i.e., a sequence of data frames. 
To facilitate mapping or navigation from these measurements requires the 
transformation of such data into information to support the mapping/navigation 
solution. Specifically, for any particular epoch, it is desirable to identify elements 
that relate measurements collected at two distinct times. A key issue in comparing 
imagery is the ability to match features between data frames. The problem of 
locating n features from the initial data frame among m features in the current frame 
is not trivial; in general, the problem is not well posed. 
 
4.2 Features 
  A variety of features may be derived from the data, such as points, lines, 
surfaces, and objects, all possible elements present in a given frame. The choice of 
feature extraction represents a trade-off between the desire to establish unique 
descriptors and the associated computational complexities required to manipulate 
the resulting elements. Other factors such as processing speed, real-time vs. post-
processing, and data acquisition may also impact the choice of feature extraction.  
The simplest method is the extraction of points; the penalty for this abstraction is 
the need to validate the uniqueness of points during the matching process. At the 
SPIN Laboratory, three point-based methods are currently under active research, 
including methodologies for establishing the integrity of the results. The first 
system is based upon the Scale Invariant Feature Transform (SIFT) algorithm 
(Lowe, 2004), the second is an eigenvector-based solution developed internally by 
one of the authors (Markiel, 2009), and the third one is ICP matching. The first two 
methods differ, as the SIFT method does not necessitate the presence of an inertial 
unit, while the eigenvector algorithm requires the presence of integrated sensors 
(such as an IMU) to provide coarse estimates of pose. 
 
4.3 SIFT Algorithm 
  The SIFT algorithm was initially developed by David Lowe in 1989; the 
algorithm is currently enjoying considerable interest in the image matching 
community for a wide variety of purposes. Interested readers are referred to (Lowe, 
2004; Mikolajczyk and Schmid, 2005; Bakken, 2007). The SPIN Laboratory has 
been conducting considerable tests related to the application of SIFT to various data 
types, including aerial photographs, LiDAR imagery, and hyperspectral imagery. In 
addition to experimentation within a data type (LiDAR to LiDAR, for example), 
current studies are also examining cross-image results (such as optical imagery to 
LiDAR). 

Bol. Ciênc. Geod., v. 15, n. 5 – Special Issue on Mobile Mapping Technology, p. 807-823, 2009. 



Terrain-based navigation: A tool to improve navigation and... 8 1 4  

  SIFT features are determined by a four-step algorithm that isolates point 
features from the image based upon intensity gradients. The resulting output 
consists of two vectors for each SIFT point; the first vector of length four and the 
second of length 128. The first vector contains the location (in terms of x, y 
coordinates based upon pixels), the scale, and the orientation of the feature. The 
second vector is called the descriptor and represents the stacked summary of 4x4 
gridded gradient vectors taken in 8 orientations. Matching of SIFT features is 
accomplished by comparison of each 128 parameter vector in the first frame to all 
of the descriptors in the second frame.  The search is generally completed by means 
of the well known kd-search tree. In practice, matching SIFT features obtained from 
two different poses can be utilized to triangulate position of the acquisition device if 
range information is available to the targeted points of interest.  
 The algorithm is exceptionally advantageous to frame matching from several 
viewpoints; it is highly robust to rotation, translation, and changes in illumination. 
Research at the SPIN laboratory has demonstrated some concerns related to 
scalability, matching of n descriptors to m descriptors can rapidly become 
computationally intractable for large values of n and m. The problem can be 
constrained in a number of ways, such as limiting the search space or imposing 
relational requirements on the solution. This does introduce additional complexity 
to the matching problem but often becomes a practical reality when tens of 
thousands of SIFT features are extracted for each frame. 
 
4.4 Eigenvector Approach 
  One challenge is to separate moving features from static elements from a time 
series of LADAR image frames. The range to the static features is known from the 
Flash LADAR data; locating the same static features from a new position permits 
the opportunity to triangulate location. Research at the SPIN Laboratory by one of 
the authors has focused on the utilization of eigenvector “signatures” for point 
features as a means to facilitate matching. The algorithm comprises four steps:  

Segmentation − 
− 
− 
− 

Coordinate frame transformation 
Feature matching 
Position and orientation determination 

 The algorithm utilizes the eigenvector descriptors to merge points likely to 
belong to a surface and identify the pixels corresponding to transitions between 
surfaces. Utilizing an initial coarse estimate from the INS (EKF) system, the results 
from the previous frame are transformed into the current coordinate reference frame 
by means of a RANSAC (Random Sampling Consensus) methodology. Matching of 
static transitional pixels is accomplished by comparing eigenvector “signatures” 
within a constrained search window. Once matching features are identified and 
determined to be static, the closed form quaternion solution (Horn, 1987) is utilized 
to derive the position and orientation of the acquisition device, and the result 
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“updates” the inertial system in the same manner of a GPS unit within the common 
GPS/INS integration. The algorithm is unique in that the threshold mechanisms at 
each step are derived from the data itself, rather than relying upon a-priori limits. 
Since the algorithm only utilizes transitional pixels for matching, a significant 
reduction in dimensionality is generally accomplished and facilitates 
implementation on larger data frames.  
 The algorithm has been applied to Flash LADAR data and initial results are 
quite promising; inertial drift after a quarter hour was constrained to less than 1 
meter (Markiel, 2009). Current constraints on the available technology limit the 
sensor to indoor use; however, other technologies are either in existence (Velodyne) 
or in development (CSEM) to extend the range and other capabilities of the laser 
ranging devices. 
 
4.5 ICP-based Surface Matching 
  The ICP (Iterative Closest Point) matching algorithm is a widely used method 
for registration of 2D or 3D point cloud data sets. The ICP algorithm finds the 
closest points between two point sets for registration. Then, typically 3D rigid body 
transformation estimation is applied between the corresponding point sets to 
determine translations and rotations iteratively. The ICP matching can be expressed 
in the following equation (1): 
 

∑ +−
i

iiTR TRDM 2
),( )(min                           (1)   

 
where R = 3x3 rotation matrix 
  T = 3x1 translation vector 
  M, D = point sets 
   i = point index 
 To obtain reliable matching results, some factors affecting the matching 
performance should be considered. First, there should be distinct features available 
in the terrain, such as terrain relief and break-lines. Without unique features, the 
algorithm may generate incorrect and false matching. The matching accuracy tends 
to increase as the terrain relief increases and usually quickly stabilizes once the 
relief reaches a certain level of complexity. Another issue of using ICP matching for 
LiDAR data is that quite different samplings of point clouds can be obtained for the 
same object due to differences in the scanner position and occlusions, which often 
occur over break-lines, such as building walls. This is an important factor affecting 
the matching results more than the point density. Therefore, invariant matching 
entities, which are less affected by occlusions, such as roof planes, should be 
preferred for processing. 
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5. EXPERIMENTAL RESULTS 
 
5.1 Optical Image Matching Based on SIFT 
 Before using it for position and attitude estimation, SIFT matching was 
evaluated by using various pairs of parent images and derived corrupted images to 
see if reliable matching information could be obtained. As an example, image 
corruption was introduced by using a 0.4 scale difference, 0.4 shear and 45� 
rotation, representing large distortion. Figure 2a shows the SIFT matching accuracy. 
There is only one outlier with a more than five pixel error, and, in general, there are 
several points with low matching accuracy. Figure 2b shows the result after outliers 
were removed based on RANSAC, resulting in improved accuracy of about one 
pixel. 
 The position and attitude estimation test was performed using a simulated 
aerial frame camera with 41mm focal length and 20 micron CCD pixel size. The 
ground resolution is approximately 15cm at the flying height of 300m. With the 
assumption of the availability of reference data, the estimation is performed based 
on single photo resection (SPR) that does not require any image overlap. Note when 
sufficient image overlap is available, the relative orientation or the bundle 
adjustment technique can be alternatively used. It should be noted that SPR shows 
better precision than DLT (Direct Linear Transform) because it is based on the prior 
information of the interior orientation parameters (IOP), such as the focal length 
and principal point coordinates. With one pixel of image measurement error, which 
was shown from the previous SIFT matching error, the test produced errors of 
0.55m (flight direction), 0.35m (across flight direction), 0.09m (height) and 0.07°, 
0.11°, 0.01° (yaw, pitch, and roll, respectively). 
 
5.2 Flash LADAR with Eigenvector Approach 
  The eigenvector approach discussed in 4.4 has been implemented on data 
collected with an integrated system comprising an inertial unit, a Flash LADAR 
camera, GPS receiver, and an Extended Kalman Filter via the AIMS-Pro® system 
of The Ohio State University.  The system was initialized by remaining stationary at 
an external position for five minutes, followed by several loops in the associated 
parking lot. A zero velocity update (ZUPT) was then performed prior to entering a 
building. The interior of the building was traversed with stop points at known 
(previously surveyed) positions along the motion path. During the traverse, non-
static elements were introduced to the environment that required the system to 
separate them out before position updates could be established.  
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Figure 2 - The SIFT matching accuracy; (a) before outlier removal, and (b) after 
outlier removal. 
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 The result of one such test is reflected in Figure 3. The finely dashed line in 
the lower right hand corner reflects the immediate drift experienced by the 
unsupported inertial solution. The solid blue line indicates the trajectory of the 
solution based upon the HG1700 inertial unit, while the red line reflects the tightly 
coupled system of the Flash LADAR based solution and the inertial solution. 
 

Figure 3 - Tightly coupled navigation solution (IMU with Flash LADAR-based 
update). 
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  The results indicate the algorithm has definite promise; the solution in the 
forward direction possesses strong geometry for extracted features (along the length 
of the walls), resulting in an accurate estimation of both position and orientation. 
The lack of strong geometry in the vertical axis is problematic and leads to solutions 
dependent heavily on the inertial information, since limited solutions are possible 
on the part of the feature-based algorithm. This problem could likely be overcome 
by periodically moving the camera along the “X” and “Y” axes (pitch and roll) to 
acquire an improved solution.  
  The algorithm itself is remarkably stable in performance; in this test the total 
run time without GPS signal was over ten minutes. When sufficient features are 
available to determine position, the feature-based solution can provide an accurate 
solution that betters the performance of a relatively high-grade inertial system. The 
results clearly indicate the essential need for strong geometry during the image 
acquisition process; an automated system would most likely need to rotate slightly 
in all three axes during periodic “calibration stops” to ensure an optimum solution 
for all three directions/orientations.  
 Short “outages” of LADAR data as a result of signal saturation are not 
devastating to the solution. So long as the subsequent images are nearly identical in 
terms of pose, the system can recover and continue to generate a meaningful 
solution. Longer outages can easily become problematic, particularly with respect to 
the vertical axis. Since the LADAR feature-based system is dependent on the 
inertial system to provide a constrained estimate of pose between images, a long 
gap results in the Kalman Filter solution being largely dependent on the drifting 
inertial unit. If the gap becomes too large, the feature-based solution may not find 
an accurate solution during the RANSAC-based search; increasing the number of 
RANSAC iterations carries a clear computational cost. Gaps of a few seconds are 
“recoverable” with good pose/geometry; extended periods can easily invalidate the 
solution. The best possible case in this instance would be to “reset” the unit and 
start again; potentially the travel path could be retraced until a previously known set 
of features could be recovered. 
 
5.3 LiDAR Based on the ICP Matching 
 The test discussed in this section was performed using the simulated aerial 
LiDAR data. For the simulation, typical airborne LiDAR system parameter settings 
and error terms were used; the laser repetition rate (pulse rate) is set to 70 kHz and 
the platform speed is fixed at 220 km/h. To visualize the effects of terrain relief on 
the matching accuracy, several reference surfaces were generated for comparison. 
From each reference terrain, each LiDAR point cloud is simulated using the 
developed LiDAR simulator which imitates the bidirectional scanning mechanism. 
Then the ICP matching is performed between each simulated LiDAR data set and 
reference terrain. Following the ICP matching, the six-parameter rigid-body 
transformation parameters are computed via standard least squares adjustment 
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techniques. The position correction is made by applying the computed parameters to 
the INS-generated position.  
 It should be noted that since the assumed LiDAR scanning is bidirectional, 
matching using only several LiDAR profiles may easily fail due to not enough 
features. Therefore, a certain number of profiles, acquired with a high scan rate, are 
assumed to be available to compute the linear scanner position drift and the rigid 
body transformation. For navigation grade INS, the short time gap (such as 1-5 
seconds, corresponding to 70-350 laser profiles in the case of a 70Hz scan rate) 
should be sufficient to approximate the linear drift. To assess the effect, the number 
of scan lines for matching are changed and tested. 
 Figure 4 shows the standard deviation of the estimated position. The abscissa 
shows the assumed data acquisition time for the LiDAR profiles with the linear 
drift, in other words, the LiDAR data acquired for the time that is assumed to have a 
linear drift. Note that surface (e) has more distinct features than surface (b) and 
shows slightly better accuracy except for the test with one-second data acquisition 
time. The accuracy errors decrease and the solution stabilizes quickly as the longer 
time assumption is used. The height is well estimated in all test cases. Our initial 
analysis seems to indicate that the matching is affected to a larger extent by the 
linear drift assumption than by the terrain features for smaller bundles of LiDAR 
profiles. 

 
Figure 4 - The estimated position accuracy from the LiDAR surface matching ((a) 

surface with small terrain relief (b) surface with high terrain relief). 
 

(a) 
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(b) 

 
 
 
6. DISCUSSION 
 Terrain-based navigation offers the opportunity to provide positional updates 
to an inertial system in the absence of (or in support of) GPS location. The 
challenge is to utilize data acquired by external sensors to facilitate a (near) real-
time positional and orientation update to the integrated system to enable an ongoing 
correction to the navigation solution. In this paper we have demonstrated the 
practical feasibility of three different methods to address this challenge. 
  The utilization of SIFT features provides strong, robust solutions to a variety 
of potential image problems (corruption) and indicates the potential for an 
exceptional positional solution. Two issues remain: (1) the method does not provide 
depth information natively, and, therefore, requires additional processing to achieve 
the positional fix, and (2) the algorithm has issues with scalability; constraints are 
required to limit the number of SIFT features generated for large images or the 
matching algorithm will become rapidly intractable. 
  The LIDAR method provides ranging information and has demonstrated sub-
meter accuracy; but the current state of technology renders the sensor highly 
susceptible to external radiative energy sources (room lighting for example) that can 
easily “blind” the sensor. The algorithm utilized in the noted experiments also 
requires the periodic rotation of the sensor in both the vertical and horizontal axes 
to enable a stronger solution; this additional motion and processing represents a 
time and computation lag to the solution in terms of generating a real-time, high-
speed solution.  
 The methods and related experiments outlined above indicate that a 
comprehensive solution may be achieved by integrating multiple sensors via an 
extended Kalman Filter. Spurious sensor position information can be easily 
excluded, while the presence of redundant information at relatively low weight (and 
cost) can be practically achieved. The methods and algorithms outlined in this paper 
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reflect both the promise of navigation in GPS challenged environments and the need 
for supporting research to leverage new sensor technologies with cutting edge 
algorithmic developments in order to realize the objective of robust navigation 
without regard to the environment. The SPIN Laboratory at The Ohio State 
University continues to research and develop unique, innovative solutions to the 
navigation problem and is grateful for the opportunity to share a portion of the 
unique, innovative research currently ongoing in this field. 
 
7. CONCLUSION 
 Terrain-referenced navigation has been used in military applications for 
decades. Recent improvements in sensor performance and real-time capabilities 
have made this concept a viable approach to mobile mapping. In contrast to past 
applications, the primary objective in mobile mapping is to improve the 
georeferencing solution of the platform, in particular in densely built-up urban 
areas. The TRN technique can tremendously help terrestrial mobile LiDAR systems, 
where the surveyed area is typically covered by several observations, acquired from 
near positions within a short time, such as using multiple 2D or 3D laser sensors. 
Given the dense point cloud and the strength of direct 3D observation, which 
preserves object shape, there is a strong geometry to recover the relative sensor 
pose, which, ultimately, can be used as fixes (position and/or attitude) to the EKF-
based navigation filter. The TRN technique applies to optical imagery (2D), except 
the 3D data should be recovered from the imagery, which is known to be quite a 
challenge in general.  
 The benefit of using TRN in mobile mapping is apparent, but the 
implementation is far from being obvious. There are three major obstacles that need 
to be overcome to make TRN operational in mobile mapping practice. First, the 
amount of the acquired data is still a concern, as both images and point clouds could 
come in volume that proper recording needs significant recourses. Second, the real-
time processing of the data stream poses a serious challenge in terms of processing 
capacity. The third issue is the complexity of the object space surveyed, which 
could include a variety of objects, coming in different shapes and with different 
dynamics. While the first two problems will slowly go away with improving 
computer technology, the third item requires significant research developments in 
the general case. 
 
REFERENCES 
References from Journals:  
BERGMAN, N., LJUNG, L., AND GUSTAFSSON, F. Terrain navigation using 

Bayesian statistics. Control Systems Magazine, IEEE Volume 19, Issue 3, Jun 
1999, pp.33-40. 

Bol. Ciênc. Geod., v. 15, n. 5 – Special Issue on Mobile Mapping Technology, p. 807-823, 2009. 



Terrain-based navigation: A tool to improve navigation and... 8 2 2  

BESL, P.J., NEIL D. MCKAY. A Method for Registration of 3-D Shapes. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, No. 2, 
1992, pp. 239-256. 

HORN, B. Closed-form Solution of Absolute Orientation Using Unit Quaternions. 
Journal of the Optical Society of America A, Vol. 4, 1987,  page 629. 

HOSTETLER, L.D., ANDREAS, R.D. Nonlinear Kalman filtering techniques for 
terrain-aided navigation. IEEE Transaction on Automatic Control, AC-28, pp. 
315-323, March 1983. 

KLASS, P.J. New Guidance Technique Being Tested. Aviation Week & Space 
Technology, pp.48-51, Feb 25, 1974. 

MIKOLAJCZYK, K. AND SCHMID, C.  A Performance Evaluation of Local 
Descriptors. IEEE Transactions on Pattern Analysis and Machine 
Intelligence, Vol. 27, No. 10, October 2005. 

WENDT, F., BRES, S., TELLEZ, B., AND LAURINI, R. Makerless outdoor 
localisation based on SIFT descriptors for mobile applications, Lecture Notes 
in Computer Science. 2008, pp. 439-446. 

References from Books: 
SHAN, J., AND TOTH, C. Topographic Laser Ranging And Scanning, CRC Press. 

2008.  
References from Other Literature: 
CAMPBELL, J. L., F. VAN GRAAS, M. UIJT DE HAAG. Terrain Referenced 

Precision Approach Guidance. Proceedings of the ION National Technical 
Meeting, San Diego, CA, 2005. 

CARROLL, JAMES et al. Vulnerability assessment of the transportation 
infrastructure relying on the global positioning system. Technical report, 
Volpe National Transportation Systems Center, August 2001. Report for US 
Department of Transportation. 

FLETCHER, J., VETH, M. AND RAQUET, J. Real-time fusion of image and 
inertial sensors for navigation. Proceedings of the Annual Meeting - Institute 
of Navigation 2007, pp.534-544. 

FRANK-BOLTON, ALVARADO-GONZALEZ, A. M., AGUILAR, W., AND 
FRAUEl, Y.  Vision-based localization for mobile robots using a set of known 
views, Advances in Visual Computing. Proceedings 4th International 
Symposium, ISVC 2008. pp.195-204. 

HAAG, M.U., VADLAMANI, A., CAMPBELL, J.L., AND DICKMAN, J. 
Application of Laser Range Scanner Based Terrain Referenced Navigation 
System for Aircraft Guidance. Proceedings of the Third IEEE International 
Workshop on Electronic Design, Test and Applications (DELTA ’06), 2006, 
pp. 269-274. 

HAAG, M.U., VENABLE, D. AND SOLOVIEV, A. Implementation of a Flash-
LADAR aided inertial navigator, Position, Location and Navigation 
Symposium. 2008 IEEE/ION 5-8 May 2008. p.560. 

Bol. Ciênc. Geod., v. 15, n. 5 – Special Issue on Mobile Mapping Technology, p. 807-823, 2009. 



Toth, C. et al. 8 2 3  

LIU, J., WANG, M., AND ZHANG, J. Monocular Robot Navigation Using 
Invariant Natural Features, Proceedings of the 7th World Congress on 
Intelligent Control and Automation, Chongqing, China, June 25 - 27, 2008.  

LOPEZ, D.G., SJO, K., PAUL, C., AND JENSFELT, P. Hybrid Laser and Vision 
Based Object Search and Localization, 2008 IEEE International Conference 
on Robotics and Automation Pasadena, CA, USA, May 19-23, 2008. 

MADHAVAN, R., AND MESSINA, E. Iterative Registration of 3D LADAR Data 
for Autonomous Navigation, Proceedings of IEEE Intelligent Vehicles 
Symposium, 2003, pp. 186-191. 

MARKIEL, J.N. An  Algorithm for Automated Feature Extraction from Laser 
Ranging Data. 17th William T. Pecora Memorial Remote Sensing Symposium, 
November 16-20, 2008a, Denver, Colorado, American Society for 
Photogrammetry & Remote Sensing (ASPRS). 

MARKIEL, J.N., GREJNER-BRZEZINSKA, D., AND TOTH, C. An algorithm for 
the extraction of static features from 3D Flash LADAR datasets: Supporting 
navigation in GPS challenged environments. Position, Location and 
Navigation Symposium, 2008 IEEE/ION 5-8 May 2008b. p.552. 

MARKIEL, J.N. Feature Based Navigation by Tightly Coupled Integration of 
Multiple Sensors. Joint Navigation Conference, Orlando, Florida, June 1-4, 
2009. 

RUNNALLS, A.R., GROVES, P.D. AND HANDLEY, R.J. Terrain-Referenced 
Navigation Using the IGMAP Data Fusion Algorithm. Proceedings of the 61st 
Annual Meeting of the Institute of Navigation, pp. 976-986, June 2005. 

RUSINKIEWICZ, S., AND LEVOY, MARC. Efficient Variants of the ICP 
Algorithm, Proceedings of Third International Conference on 3-D Digital 
Imaging and Modelling, 2001,  pp. 145-152. 

STRELOW, D. Motion estimation from image and inertial measurements, doctoral 
dissertation, tech. report CMU-CS-04-178, Robotics Institute, Carnegie 
Mellon University, November, 2004. 

TOTH, C.   GREJNER-BRZEZINSKA, D.A., AND LEE, Y-J. Terrain-based 
navigation: Trajectory recovery from LiDAR data, Proceedings of IEEE/ION 
PLANS, pp. 760-765, May 2008. 

VETH, M.M. AND RAQUET, J. Fusion of low-cost imaging and inertial sensors 
for navigation, Proceedings of the Institute of Navigation - 19th International 
Technical Meeting of the Satellite Division, ION GNSS, 2006. pp.1093-1103. 

References from websites:   
LOWE, D. “Distinctive Image Features from Scale-Invariant Keypoints”, 

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf (accessed 29 June 2009) 
 
 

Bol. Ciênc. Geod., v. 15, n. 5 – Special Issue on Mobile Mapping Technology, p. 807-823, 2009. 

http://www.cs.ubc.ca/%7Elowe/papers/ijcv04.pdf

	1. INTRODUCTION 
	2. SENSOR CHARACTERIZATION  
	2.1 Optical Sensors 
	2.2 Ranging Sensors 
	3. NAVIGATION COMPONENT 
	4. MATCHING COMPONENT 
	4.1 General Discussion 
	4.2 Features 
	4.3 SIFT Algorithm 
	4.4 Eigenvector Approach 
	4.5 ICP-based Surface Matching 

	5. EXPERIMENTAL RESULTS 
	5.1 Optical Image Matching Based on SIFT 
	5.2 Flash LADAR with Eigenvector Approach 
	5.3 LiDAR Based on the ICP Matching 

	6. DISCUSSION 
	7. CONCLUSION 
	REFERENCES 


