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ABSTRACT 

Most of the developed pedestrian navigators rely on the use of satellite positioning 
(GNSS), sometimes also in combination with other sensors and positioning 
methods. In the project “Ubiquitous Cartography for Pedestrian Navigation” 
(UCPNAVI) we have integrated active Radio Frequency Identification (RFID) in 
combination with GNSS and Inertial Navigation Systems (INS) for continuous 
positioning. RFID can be employed in areas where no satellite positioning is 
possible due to obstructions, e.g. in urban canyons and indoor environments. In 
RFID positioning the location estimation is based on Received Signal Strength 
Indication (RSSI) which is a measurement of the power present in a received radio 
signal. The receiver can compute its position using various methods based on RSSI. 
In total, three different methods have been developed and investigated, i.e., cell-
based positioning, trilateration and RFID location fingerprinting. These methods 
can be employed depending on the density of the RFID tags in the surrounding 
environment providing different levels of positioning accuracies. By integrating the 
three methods for positioning into an intelligent software package and developing a 
knowledge-based system it is possible to determine the pedestrian position 
automatically and ubiquitously. The concept of the intelligent software package is 
presented and described in the paper. For improvement of the positioning accuracy 
of cell-based positioning a modification has been developed, the so-called time-
based Cell of Origin (CoO) positioning method. This method uses also the 
measured RSSI above a certain threshold which is measured only if the user is 
located very close to the RFID tag. The test results showed that the accuracy of 
positioning using time-based CoO is in the range of 1.30 m. For continuous 
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positioning of the pedestrian user, a low-cost INS is employed in addition. Since the 
INS components produce small measurement errors that accumulate over time and 
cause drift errors, the positions determined by RFID would be needed regularly for 
update. For the combined positioning of RFID and INS a time-varying Kalman 
filter is employed. The approach is tested in indoor environment in an office 
building of our university. For the combined positioning, an accuracy of around 
1.00 m for continuous position determination is achieved. The new approach and 
the test results are also described in this paper.  
Keywords:  GPS/INS; Integration; Navigation; Mobile; Multi-Sensor. 
 
 
1. INTRODUCTION 
 Personal navigation and guidance services usually rely on GNSS positioning 
and therefore their use is limited to open areas where adequate satellite signals can 
be received. If the user moves in obstructed urban environment or indoors, 
alternative location methods are required to be able to locate the user continuously. 
In our approach GNSS positioning is combined with a MEMS-based Inertial 
Measurement Unit for continuous position determination. In addition, Radio 
Frequency Identification (RFID) Location Methods are employed to replace GNSS 
in obstructed areas. RFID can also be used for positioning, because the location 
estimation can be based on signal strength measurements (i.e., received signal 
strength indication RSSI) which is a measurement of the power present in a 
received radio signal. Then the mobile receiver can compute its position using 
various methods based on RSSI.  
 Totally, three different methods have been developed and investigated, i.e., 
cell-based positioning, trilateration using ranges to the surrounding RFID 
transponders (so-called RFID tags) deduced from RSSI measurements and RFID 
location fingerprinting. In most common RFID applications positioning is 
performed using the cell-based positioning principle. In this case, RFID tags can be 
installed at active landmarks with known location in the surroundings. Then the 
user is carrying an RFID reader and is positioned using Cell of Origin (CoO). The 
achievable positioning accuracy thereby depends on the size of the cell defined by 
the maximum read range of the signal. Using long range active RFID this read 
range can be quite large, i.e., up to 40 to 80 m. Higher positioning accuracies can be 
achieved using a modification of cell-based positioning which is called time-based 
CoO. In this approach, the location of the RFID tag is used to describe the current 
position of the user only if the received signal strength from the tag is above a 
certain threshold. The maximum in signal strength usually only appears when the 
user is currently located very close to the tag’s position. If more than one maximum 
in signal strength is detected at different times, then the mean value for the time 
epoch is taken when the user is nearest to the tag. This developed approach provides 
positioning accuracies on the one meter level and will be introduced in this paper.  

Bol. Ciênc. Geod., v. 15, n. 5 – Special Issue on Mobile Mapping Technology , p. 707-724, 2009. 



Retscher, G. and Fu, Q. 7 0 9  

 Apart from cell-based positioning also trilateration and location fingerprinting 
can be employed when the RSSI of more than two RFID tags can be read at the 
same time. Positioning accuracies on the one to several metre level can be achieved 
for a continuously moving user.  
 GNSS and RFID as well are then integrated with INS positioning for 
continuous position determination of a pedestrian. INS measurements would be 
utilized to calculate the trajectory of the user based on the method of strap down 
mechanization. Since the INS components produce small measurement errors that 
accumulate over time and cause drift errors, the positions determined by RFID or 
GNSS would be needed regularly to eliminate and reduce these errors. All 
observations are then integrated in a Kalman filter to estimate the user’s position 
and velocity. By integrating the above mentioned measurements into an intelligent 
software package the developed personal navigator will enable to determine the 
mobile user’s position continuously, automatically and ubiquitously. 
 This paper is organized as follows: first of all, the different RFID positioning 
methods are briefly described in section 2 followed by a detailed description of 
continuous positioning using RFID and INS in section 3. Indoor positioning test 
results are presented in section 4. In section 5, the concept for the development of 
an intelligent software package is introduced followed by concluding remarks in 
section 6. 
 
 
2. RFID FOR POSITIONING OF A PEDESTRIAN 
 In RFID positioning of a pedestrian, the location estimation is based on RSSI 
which is a measurement of the power present in a received radio signal. The 
receiver can compute its position using various methods based on RSSI. In total, 
three different methods have been employed, i.e., cell-based positioning, 
trilateration using ranges to the surrounding RFID tags deduced from received 
signal strength measurements and RFID location fingerprinting (Fu, 2008). These 
technologies can be employed depending on the density of the RFID transponders 
(so-called tags) in the surrounding environment. For positioning with RFID either 
readers or tags can be placed at known location in the surrounding environment. We 
have chosen a low-cost concept where the less expensive tags are deployed in the 
surrounding environment at active landmarks (i.e., known location) or at regular 
distances. The mobile user is carrying a reader in form of a PC-card, which can be 
plugged into the mobile device (e.g. a pocket PC or laptop).  
 The most straightforward method is cell-based positioning. The maximum 
range of the RFID tag defines a cell of circular shape in which a data exchange 
between the tag and the reader is possible. Several tags located in the smart 
environment can overlap and define certain cells with a radius equal the read range. 
The accuracy of position determination is defined by the cell size. Using active 
RFID tags the positioning accuracy therefore ranges between a few meters up to 
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tens of meters. However, the accuracy could be improved by using the so-called 
time-based CoO. In time-based CoO two improvements of the standard cell-based 
positioning have been made to get a higher positioning accuracy. First of all, a 
threshold value is set to reduce the size of the cell. Secondly, the mean value of the 
corresponding time is calculated for all signal strength measurements above the 
threshold (compare Figure 3). As a result, the positioning accuracy is improved. 
The RFID time for each detected ID is the mean value of the corresponding time. 
The location determined in this way ensures that the calculated position is closest to 
the true position of the RFID tag. The approach takes the fact into account that the 
received signal strength is highly variable in indoor environments with a large 
number of obstacles and moving objects which affect the propagation of the RFID 
signals. 
 For verification of the RFID time-based CoO measurements a tool was 
developed under the environment of Microsoft Visual Studio 2008. If the user 
passes by an RFID tag a marker can be set in the program by a simple mouse click 
capturing the system time. This is used as an indication for the user currently being 
nearest to the true location of the RFID tag. The verification tool is called “time 
data capture tool”. The known RFID tag coordinates are regarded as true positions 
at this point of time. The location determined by the integration of RFID and INS at 
the corresponding point of time is the estimated position. The differences between 
these two positions are the estimated errors. 
 As an alternative to time-based CoO, trilateration and location fingerprinting 
have been investigated. Trilateration can be employed if the ranges to several tags 
in the surrounding environment can be determined. Then these ranges are used for 
intersection. The range from the antenna of the reader to the antenna of the tag is 
deduced from the conversion of signal strength into distances. Strategies for the 
conversion of the signal strength measurements into distances are distinguished 
between indoor and urban outdoor environment. It was found that a simple 
polynomial relationship between the signal strength and the range provides 
reasonable results (see Fu and Retscher, 2009b). The highest positioning accuracies 
can be obtained with location fingerprinting. In case of RFID location 
fingerprinting (Kaemarungsi, 2005; Retscher et al., 2007), RSSI is measured in a 
training phase at known locations and stored in a database. In the positioning phase, 
these measurements are used together with the current measurements to obtain the 
current location of the user. Location fingerprinting, however, is more costly and 
complicated in comparison to cell-based positioning and trilateration. For this 
method different advanced approaches have been developed and tested (see Fu, 
2008). For the creation of the database in RFID location fingerprinting interpolation 
methods can be used, in order to achieve a further improvement of the positioning 
accuracy. 
 To test the different methods experiments have been conducted in a test bed 
near and in the university building of the Vienna University of Technology in 
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downtown Vienna. The conducted experiments (see e.g. Fu, 2008; Fu and Retscher, 
2009b) showed that these approaches are suitable to navigate the user with different 
positioning accuracies, i.e., lower positioning accuracies on the several meter level 
in outdoor environment using cell-based positioning and higher positioning 
accuracies on the one meter level in indoor environments with trilateration and 
fingerprinting. 
 
 
3. CONTINOUS POSITIONING WITH RFID AND INS 
 The RFID positioning is restricted, however, to areas where at least one RFID 
signal can be detected. If there is lack of coverage of signals of the RFID tags, the 
RFID reader will lose its capability for continuous positioning. In order to 
overcome these shortages, we have integrated a low-cost Inertial Navigation System 
(INS) in addition. In the following, first of all the determination of trajectories using 
an INS is explained and then the fusion of RFID and INS is discussed and 
presented. The approach is verified by field tests and the results of the experiment 
are presented in the next section. 
 
3.1 Trajectory Determination with Low-cost Inertial Navigation System (INS) 
 Generally, inertial systems are categorized in two groups (Lawrence, 1998; 
Gabaglio, 2002): gimbals and strapdown INS. The gimbaled systems are heavy and 
large. Hence, they are unsuitable for pedestrian navigation. In contrast to gimbaled 
systems a strapdown system has advances in sensor development (Barbour, 2001) in 
terms of size, precision and cost, as well as in computation capabilities of processor 
and can, therefore, be utilized for pedestrian navigation. The term “strapdown” can 
be dated back to the technique that modern systems have removed most of the 
mechanical complexity of platform systems by having the sensors attached rigidly, 
or “strapped down”, to the body of the host vehicle (Titterton and Weston, 2005). 
 Normally, an INS is composed of three gyroscopes and three accelerometers. 
All the sensors are mounted orthogonal. They are used to measure the angular rate 
and to capture the acceleration in one of the three directions. It is to be noted that 
the measurements are in the right handed Cartesian coordinate system. This 
coordinate system is body-fixed to the device and is defined as the body frame. The 
body frame changes with respect to the navigation frame. The relationship between 
these two frames can be described by attitude parameters which are defined as the 
orientations in space of the INS body frame (see Figure 1).  
 Usually, the attitude is numerically represented by a 3x3 matrix R that is an 
orthogonal endomorphism. Generally, the attitude can be parameterized in two 
ways: using Quaternions and using Euler angles. Euler angles ),,( ψθφ  are 
equivalent to “roll, pitch and yaw” (see Figure 1). Quaternions q0, q1, q2, q3 are an 
efficient, non-singular description of 3-D orientation and have advantages from a 
numerical and computational point of view (Shuster 1993). 
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Figure 1 - The INS body frame (x,y,z) and the navigation frame (X,Y,Z) 

 

 
 
 INS obtains measurements for the rate of turn using a gyroscope and 
acceleration using an accelerometer. These measurements need to be integrated over 
time to obtain orientation changes and velocity measurements. Then the current 
position could be derived by integrating the obtained orientation changes and 
velocity measurements over time if the start position could be given for the 
integration. The strapdown mechanization in our approach uses the orientation data 
from the INS (unit quaternions q0, q1, q2, q3 or Euler parameters ψθφ ,, ) and the 
calibration data (rate of turn from the gyroscope gyrx_b, gyry_b, gyrz_b and 
acceleration from the accelerometer accx, accy, accz) to obtain the trajectory of the 
INS. This process is divided into two steps. Firstly, the input data are used to 
calculate the free acceleration accx_b, accy_b, accz_b and the rotation matrix Rnb, 
whereby, in the free acceleration the gravity and centrifugal force are not included, 
and the rotation matrix is used for the transformation between the body frame b and 
the navigation frame n. In the second step, the position of user px_n, py_n, pz_n in the 
navigation frame is computed by integrating acceleration and velocity over time.  
 The Euler angles φnb, θnb and ψnb are calculated by using the quaternions q0, 
q1, q2, q3 which can be obtained from the sensor directly: 
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 After that the orientation angles φ, θ and ψ  regarding the navigation frame of 
the sensor can be obtained by integrating the rate of turn gyrx_b, gyry_b, gyrz_b over 
the time: 
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 Then the rotation matrix Rnb from the body frame b to the navigation frame n 
can be computed: 
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 Note that the transpose of the rotation matrix Rnb is equivalent to the rotation 
matrix Rbn from the navigation frame n to the body frame b. 
 Now the free acceleration will be deduced. The free acceleration here is the 
second derivative of the position that does not include the acceleration due to 
gravity and centrifugal force in contrast to the original measured linear acceleration. 
This is inherent to all accelerometers (Xsens, 2007). Therefore, the gravity and 
centrifugal force must be subtracted from the measured linear acceleration, so that 
the free acceleration could be obtained. 
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 Concerning that there are drifts in the measurements of rate of turn and 
acceleration, one more measurement was carried out by keeping the Xsens device 
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unmoved for a short time period, in order to find out the drifts. These drifts (gyrx0_b, 
gyry0_b, gyrz0_b and accx0, accy0, accz0) are subtracted from the measurements while 
the INS sensor was moved (see equation 4). 
 After the free acceleration and rotation matrix have been calculated from the 
original measured orientation and calibration data, they would be integrated over 
time to obtain the orientation changes and velocity measurements. Then the current 
position could be derived by integrating the obtained orientation changes and 
velocity measurements over time and using the position from the last calculation. 
These processes occur in the second step of the determination of the trajectory using 
INS. 
 The current user position must also be transformed into the navigation frame 
n. The first integration of the accelerations accx_b, accy_b, accz_b leads to the 
velocities vx_b, vy_b, vz_b in the body frame b. Then the velocities vx_n, vy_n, vz_n in 
the navigation frame n can be obtained. The 3-D coordinates px_b, py_b, pz_b in the 
body frame b can be calculated by integrating the above obtained velocities over 
time. Then the user position px_n, py_n, pz_n in the navigation frame n can be 
obtained. This process has to be done recursively starting from the position from the 
last calculation. 
 
 
3.2 Fusion of RFID and INS Positioning 
 In our attempt presented in this paper RFID time-based CoO (compare section 
2) is combined with the INS positioning. Then the absoulte positioning with RFID 
can be used to correct the drift of the INS which is caused by the accumulation of 
errors of the sensors. For the integration of INS with either GNSS or RFID 
positions usually a Kalman Filter is employed. In the algorithm, the strapdown INS 
local geographic navigation frame mechanization (Titterton and Weston, 2005) is 
combined with the three-axes inertial error model (Brown and Hwang, 1997) and 
the RFID time-based CoO method to produce accurate and continuous positioning 
estimations. A basic 9-state dynamic model is used as the RFID/INS Kalman Filter 
model. In the model, the state vector x contains three position errors, three velocity 
errors and three Euler angle errors. Using such a Kalman Filter a meaningful 
integration of INS with RFID can be performed (Fu and Retscher, 2009a). 
 In our approach, we used a so-called time-varying Kalman filter developed in 
Matlab programming environment which is a generalization of the steady-state filter 
for time-varying systems with nonstationary noise covariance and is given by the 
recursions.  
 The continuous-time state equation of the time-varying Kalman filter is given 
by:
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 Equation 5 can be transferred into a discrete-time state equation:  
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 The measurement equation is: 
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 The system noise covariance matrix Q is: 
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where 2=

x_bvσ  is the velocity noise in the x axis in [m/s], 

 
2=

y_bvσ  is the velocity noise in the y-axis in [m/s], 

 012.0=
x_baccσ  is the accelerometer noise in the x-axis in [m/s2], 

 012.0=
y_baccσ  is the accelerometer noise in the y-axis in [m/s2] and 

 007.0=
z_bgyrσ  is the gyroscope noise in the z-axis in [rad] 

with the ]/[012.0 2smbias =  and ]/[007.0 sraddrift =  as given by the sensor 
manufacturer. 
 
 The observation error covariance matrix R is: 
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where   1>=

x_npσ  [m] and 1>=
y_npσ  [m] (R matrix for RFID is indicated by 

RRFID), 
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 0=
x_npσ  [m] and 0=

y_npσ  [m] (R matrix for INS is indicated by RINS). 

 
 Using new measurements the state vector can be recursively updated in the 
Kalman filter process.  
 
4. INDOOR POSITIONING TEST 
 This section presents the integration of RFID and low-cost INS for continuous 
positioning in an indoor environment. In the project, a low-cost INS from Xsens, 
the MTi, has been employed. For calculating the positions from the measured data 
of the sensor the strapdown mechanization is used. Furthermore, a time-varying 
Kalman filter is employed to correct the position and acceleration resulted from the 
strapdown mechanization. RFID time-based CoO positioning is utilized to 
determine the current position of the user, when the RFID reader detects a signal 
from an RFID tag in the surrounding environment. This determined position will be 
needed to update and correct the trajectory calculated by the INS, since the INS 
components produce small measurement errors that accumulate over time and cause 
drift errors. 
 

Figure 2 - Indoor positioning test environment. 
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 The indoor positioning test was conducted on the 3rd floor in an office 
building of the Vienna University of Technology (see Figure 2). The trajectory 
starts in front of the elevator (referred to as “Lift” in Figure 2) and leads to a general 
teaching room along a corridor around the corner. The route is totally 32.9 m long 
and can be divided into two sections which are rectangular to each other. The 
second part of the route runs along the middle line of the corridor and has a length 
of 25.9 m. The reference trajectory is shown as solid line in Figure 2. In total, seven 
RFID tags were mounted in the test bed evenly distributed. Tags were suspended 
from the ceiling in a height of 2.0 m above the ground.  
 In this experiment cell-based positioning was employed for RFID positioning. 
Figure 3 shows the signal reception using cell-based positioning including the 
information of the RSSI, the time the tag was detected, and the ID of the tag. Each 
tag is identified by its presence or absence and the measured signal strength RSSI. 
As indicated by the circles, RSSI measurements which were higher than the 
threshold value of -46 dBm are selected for time-based CoO.  

 
Figure 3 - Signal reception using cell-based positioning. 

 

 
 
 
 The position determined using RFID cell-based positioning was utilized in 
order to update the trajectory calculated by using the measurements of the INS. The 
Xsens MTi sensor bandwidth was 100 Hz. Additionally, a Kalman Filter is used to 
correct the position and velocity dynamics of the INS sensor. Figure 4 shows the 
filter result of the INS trajectory. The dashed line represents the measured response 

Bol. Ciênc. Geod., v. 15, n. 5 – Special Issue on Mobile Mapping Technology , p. 707-724, 2009. 



Retscher, G. and Fu, Q. 7 1 9  

by using the strapdown mechanization without filtering, while the solid line 
represents the result of the positions filtered by the Kalman Filter. The error in 
position increased over time with a maximum error in y-direction of around 2.50 m 
and a maximum error in x-direction of around 15.00 m. However, the error could be 
significantly reduced using the Kalman Filter. Figure 4 denotes that all points are 
positioned with a maximum radial deviation of 2.65 m and with a mean radial 
deviation of around 0.90 m. It can be seen that the mean radial deviation plus 
standard deviation is in the range of 1-2 m. Therefore, an accuracy in this range for 
continuous positioning in indoor environments can be achieved. 
 

Figure 4 - Filter result of the INS trajectory. 
 

 
 
 
 Table 1 includes the estimated error of positioning using the integrated 
system. It can be seen that the maximum error in x-direction is 0.41 m, while the 
maximum error in y-direction is 1.04 m. The maximum error in position is 1.05 m. 
 In Table 1, dxf is the deviation between the filtered and true location of the 
tags along the x-axis, dyf is the deviation between the filtered and true location of 
the tags along the y-axis and drf is the radial deviation between the filtered and true 
location of the tags. 
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Table 1 - Estimated positioning error of integrated system. 
 

 
 

 The experiment showed that the determination of the trajectory using an 
integration of RFID and the INS achieved an accuracy of around 1.00 m in two 
directions on the x-y plan. Furthermore, the maximal error of the positioning was 
1.40 m along the x-axis and 1.20 m along the y-axis. This accuracy is suitable for 
most positioning applications in indoor environments. 
 
 
5. DEVELOPMENT OF AN INTELLIGENT SOFTWARE PACKAGE 
 As presented in the introduction and in section 2, three different methods 
using RFID have been investigated and employed for positioning in indoor and 
urban outdoor environments, i.e., cell-based positioning (RFID CoO and RFID 
time-based CoO), trilateration and RFID location fingerprinting. The conducted 
tests demonstrate that these three different RFID positioning methods are quite 
appropriate for positioning in different environments such as an urban and indoor 
environment and a transition zone between these two. When the user walks from 
one environment to another, however, the method of positioning cannot be switched 
automatically. In other words, currently the corresponding software package of the 
positioning methods has to be selected manually when the environments change. In 
this section, a proposed concept is introduced for an intelligent knowledge-based 
software environment for continuous positioning in complex environments. 
 As mentioned above, the three different positioning methods are environment 
specific. For continuous positioning in complex environments, these three methods 
should be combined and integrated into one software package. In addition, the 
system should be able to automatically identify the type of environment 
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encountered by the user at this time point. This requires an intelligent integration of 
these three methods by a knowledge-based system (Fu and Retscher, 2008).  
 Figure 5 shows a preliminary concept for such an intelligent integration. The 
main focus is to develop an intelligent software environment. The software should 
support capturing the measurements from the employed sensors in real-time and 
processing the measured data within the required time. At the same time, the 
software should identify the current location environment and start the 
corresponding method of positioning automatically. Finally, the software should 
have a user friendly interface. With such a software and the knowledge-based 
system, continuous positioning in a complex environment could be carried out 
automatically. We propose to use fuzzy logic for the development of the intelligent 
software package. By formulating a number of conditions the selection of the 
suitable RFID positioning method can be performed. Then the membership 
functions of the fuzzy system form the knowledge-based system. 
 

Figure 5 - Intelligent concept for the selection of the RFID positioning method 
depending on the environment of the pedestrian user. 

 

 
 
 
6. CONCLUSIONS AND OUTLOOK 
 This paper addresses the investigation of different methods and algorithms for 
positioning using low-cost active RFID and INS for urban and indoor 
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environments. For the positioning using active RFID totally three different methods 
have been developed and investigated, i.e., cell-based positioning, trilateration 
using ranges to the surrounding RFID transponders (so-called tags) deduced from 
received signal strength measurements and RFID location fingerprinting.  
 The cell-based positioning is an algorithm to determine the location of the 
user in a cell around the RFID tag with a size defined by the maximum range of the 
RFID signals. The achievable positioning accuracies depend on the size of the cell, 
i.e., up to 20 m using our long range RFID equipment. Therefore, this method is 
only well suited for areas where accuracy is not that import, such as urban outdoor 
environment. However, the accuracy can be improved using a self developed 
algorithm that investigates the contribution of the measured signal strength around 
the RFID tag. This approach is called time-based Cell of Origin (CoO) and is 
introduced in this paper. The test results showed that the accuracy of positioning 
using time-based CoO is in the range of 1.30 m. 
 Trilateration can be employed if the ranges to several tags are determined and 
are used for intersection. The range from the antenna of the reader to the antenna of 
the tag is deduced from the conversion of signal power levels into distances. 
Strategies for the conversion of the signal strength measurements into distances are 
distinguished between indoor and urban outdoor environment. Using trilateration 
usually positioning accuracies on the one to a few meters level can be achieved. 
 For indoor environments also the use of RFID location fingerprinting was 
investigated. For the creation of the database in RFID location fingerprinting 
interpolation methods can be used, in order to achieve a further improvement of the 
positioning accuracy. The test of positioning using location fingerprinting showed 
that positioning accuracy below 1.00 m could be achieved. 
 Experiments have been carried out using the three methods of RFID 
positioning. In general, the experiments showed these three methods are appropriate 
for locating the user with different positioning accuracies, i.e., lower positioning 
accuracies in outdoor environment using cell-based positioning and higher 
positioning accuracies in indoor environments with trilateration and fingerprinting. 
The positioning is restricted, however, to areas where at least one RFID signal can 
be detected. If there is lack of coverage of signals of the RFID tags, the RFID 
reader will lose its orientation. In order to overcome these shortages we propose to 
integrate a low-cost Inertial Navigation System (INS) in addition. 
 In the project, a low-cost INS from Xsens, the MTi, has been employed. For 
calculating the positions from the measured data of the sensor the strapdown 
mechanization is used. Furthermore, a time-varying Kalman filter is employed to 
correct the position and acceleration resulted from the strapdown mechanization. 
RFID cell-based positioning is utilized to determine the current position of the user, 
when the RFID reader detects a signal from an RFID tag in the surrounding 
environment. The determined position will be needed to update and correct the 
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trajectory calculated by INS, since the INS components produce small measurement 
errors that accumulate over time and cause drift errors. 
 The above concept has been implemented and tested in a real world 
environment. For the combined positioning of RFID and INS an accuracy of around 
1.00 m for continuous position determination can be achieved using our approach. 
From this result, it can be concluded that our approach using an integrated RFID 
cell-based and INS positioning with a time data capture tool is suitable for 
continuous position determination of a mobile user in challenging indoor 
environments.  
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