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RESUMO 
O processo de detecção de bordas de Canny baseia-se em dois critérios básicos de 
desempenho, i.e., os critérios de detecção e localização.  Estes critérios estão 
sujeitos ainda a um terceiro, conhecido como injunção de resposta múltipla, que 
força o processo a detectar uma única borda onde existe somente uma borda 
verdadeira. O principal objetivo do trabalho de Canny é o desenvolvimento de um 
detector ótimo para o tipo de bordas mais comum em imagens digitais, i.e., as 
bordas tipo degrau. Uma das principais constatações de Canny é que o operador 
ótimo encontrado é muito semelhante à função gerada pela primeira derivada da 
função Gaussiana. Canny também propôs um processo de afinamento de bordas 
conhecido como supressão não máxima e um outro processo conhecido como 
histerese, cuja função é a de eliminar a fragmentação das bordas causada pelo ruído 
da imagem. Este trabalho apresenta, além dos aspectos teóricos e computacionais 
acima mencionados, também alguns resultados experimentais obtidos com imagens 
sintéticas e reais. 
 

ABSTRACT 
The Canny edge detection process is based upon two basic performance criteria, 
i.e., the detection and localization ones. Both of then must be still under a third 
criterium, which is known as multiple response constraint and it enforces the edge 
detection process to detect single edges where there is only one true edge. The 
major goal of Canny work is the development of an optimal detector for the most 
common edge occurrence in digital images, i.e., the step edges. Canny most 
important finding is that the optimal operator found is very similar to the first 
gaussian function derivative. Canny also proposed an edge thinning process that is 
known as nonmaximum suppression and hysteresis process to eliminate edge 
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fragmentation due to the image noise. In addition to the theoretical and 
computational aspects above mentioned, this paper also presents some experimental 
results obtained with synthetic and real images. 
 
1  INTRODUÇÃO 
 As propriedades dos objetos, tais como as características geométricas e físicas, 
são passadas à imagem pois ocasionam variações nos tons de cinza da imagem. 
Dessa forma, para se detectar e extrair informações dos objetos, muitas técnicas de 
processamento de imagens são utilizadas, dentre elas a detecção de bordas. 
 Dependendo do fim a que se destina, a detecção de bordas pode ser tida como 
um fim ou como um pré-processamento para passos subsequentes. De qualquer 
forma, para que sejam obtidos os resultados desejados, é necessário que a estratégia 
de detecção de bordas seja eficiente e confiável. A fim de que as variações dos tons 
de cinza sejam detectadas (bordas) é necessário diferenciar a imagem. Porém, 
quando a imagem é diferenciada, todas as variações dos níveis de cinza são 
detectadas e, por conseqüência, detecta-se também bordas espúrias, que é uma 
forma indesejável de variação. 
 Para que as bordas espúrias, provenientes de ruído ou textura da imagem, não 
sejam detectadas, deve-se suavizar a imagem antes da detecção. Contudo, existem 
efeitos inoportunos ligados à suavização, i. e., perda de informação e deslocamento 
de estruturas de feições relevantes na imagem. Além disso, existem diferenças entre 
as propriedades dos operadores diferenciais comumente utilizados, ocasionando 
bordas diferentes. Logo, é difícil formular um algoritmo de detecção de bordas que 
possua um bom desempenho em diferenciados contextos e capture os requisitos 
necessários aos estágios subsequentes de processamento (Ziou e Tabbone, 1997). 
Consequentemente, no tocante ao processamento de imagem digital, uma variedade 
de detetores de bordas tem sido desenvolvidos visando diferentes propósitos, com 
formulações matemáticas diferenciadas e com propriedades algorítmicas distintas. 
 Com base nos problemas acima mencionados, Canny (1986), desenvolveu um 
processo de detecção de bordas a partir de critérios de quantificação de desempenho 
de operadores de bordas conhecidos como os critérios de detecção e de localização. 
Estes critérios de desempenho ainda estão sujeitos ao critério de resposta múltipla, 
que corresponde ao fato de que deve haver, na saída do operador, uma única 
resposta para uma única borda. Para que os critérios sejam aproximadamente 
atendidos, Canny aproxima o operador ótimo, obtido a partir dos três critérios de 
desempenho, pela primeira derivada da função Gaussiana. Em complemento a este 
operador, foi proposto um processo conhecido como supressão não máxima 
(supressão de valores de pixels que não forem máximos locais na direção 
transversal à borda), que causaria um afinamento da borda, atendendo à injunção de 
resposta múltipla, e uma limiarização adaptativa (histerese) com “complementação 
de bordas”, para eliminar a fragmentação dos contornos das bordas. 
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 Este trabalho tem por motivação a discussão de aspectos teóricos e 
computacionais do processo de detecção de bordas de Canny. Como poderá ser 
visto mais adiante, o método de Canny baseia-se em sólida fundamentação teórica, 
cuja complexidade está muito longe da trivialidade dos operadores convencionais 
de borda. Consequentemente, devido principalmente à limitação de espaço, boa 
parte da fundamentação matemática não pode ser apresentada. Para maiores 
detalhes, recomenda-se o trabalho original de Canny (1986). A seção 2 apresenta os 
critérios de filtro ótimo. O filtro  ótimo para bordas do tipo degrau é apresentada na 
seção 3. A justificativa para a aproximação do filtro ótimo pela primeira derivada da 
função Gaussiana encontra-se na seção 4. Na seção 5 são apresentados os aspectos 
algorítmico e computacional. Na seção 6 são apresentados os experimentos e 
avaliações. As principais conclusões são apresentadas na seção 7. 
 
2  CRITÉRIOS PARA UM FILTRO ÓTIMO 
 Conforme Canny (1986), qualquer filtro para a detecção de bordas deve 
atender a três critérios básicos. O primeiro deles é denominado Taxa de Erro ou 
Detecção, consistindo na maximização da razão sinal/ruído (SNR). Quanto maior 
for o SNR, maior é a probabilidade de se detectar as bordas verdadeiras da imagem. 
O segundo critério especifica que pontos de borda devem estar bem localizados, isto 
é, as distâncias entre os pontos extraídos pelo detetor e as respectivas posições 
verdadeiras devem ser minimizadas. Tem-se então o critério de Localização (L), 
definido como sendo o inverso da distância entre um ponto detectado e a respectiva 
posição verdadeira. Portanto, quanto maior for L, mais próximos das posições 
verdadeiras estarão os pontos detectados pelo filtro. Pelo exposto, o projeto de um 
filtro para a detecção de bordas arbitrárias envolve a maximização de ambos os 
critérios, o que é equivalente à maximização do produto entre ambos (SNR e L), 
ficando (Canny, 1986): 
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onde f(x) é a resposta de impulso do filtro definido no intervalo [-w; w], G(x) é uma 
borda unidimensional e 0n a quantificação do ruído da imagem. Assume-se que a 
borda está centrada em x = 0. Na equação 1, a primeira quantidade entre parêntesis 
corresponde ao SNR e a segunda à L. 
 A condição de filtro ótimo (eq. 1) deve ainda atender a um terceiro critério, 
denominado critério de resposta múltipla. A idéia básica é que deve haver um único 
ponto de borda onde existe uma única borda verdadeira. Seja (Canny, 1986): 
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a expressão matemática para a distância (x max ) entre máximos adjacentes na 
resposta do filtro f(x) devido ao ruído. Assim, ao maximizar a condição dada pela 
equação 1, deve-se também garantir que x max  seja maior possível, aumentando a 
possibilidade de separação de máximos verdadeiros dos falsos na saída do filtro 
f(x). 
 
3  DETETOR DE BORDAS DEGRAU (STEP EDGES) 
 Uma borda qualquer do tipo degrau é matematicamente definida como G(x) = 
A.u 1− (x), onde A é a amplitude da borda e u 1− (x) é dada por: 
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 Substituindo G(x) na condição dada pela equação 1, pode-se escrever a 
seguinte condição, que é independente da amplitude de borda A e do ruído n 0 : 
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onde )f(Σ e )'f(Λ (as respectivas quantidades entre parêntesis) são duas medidas 
de desempenho, as quais dependem somente do filtro f(x). Estas quantidades estão 
relacionadas, respectivamente, com a detecção e a localização. Demonstra-se que 

)f(Σ e )'f(Λ variam inversamente ao longo do espaço-escala, significando que, 
quando se privilegia a detecção, perde-se em localização e vice-versa. A condição 4 
não pode ser resolvida diretamente para se obter o filtro ótimo f(x). Dada a 
complexidade do tratamento matemático envolvido, limita-se a apresentação da 
solução geral para a equação 4 no semi-intervalo de suporte [-w; 0]  (Canny, 1986): 
 

cωxcoseaωxseneaωxcoseaωxseneaf(x) αx
4

αx
3

αx
2

αx
1 ++++= −−      (5) 

onde ce,,a,a,a,a 4321 ωα   são as incógnitas a determinar. 
 A função 5 está sujeita às seguintes condições de contorno: 
 

f (0) = 0;   f (-w) = 0;   f ' (0) = s;   f ' (-w) = 0                          (6) 
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onde s é um incógnita correspondente à declividade da função f(x) na origem. Visto 
que f(x) é assimétrica, pode-se estender a equação 5 para todo o intervalo de suporte   
[-w, w] usando o fato de que f(-x) = -f(x). As quatro condições de contorno 
possibilitam encontrar as quantidades de 4321 aea,a,a  em função das incógnitas 

sec,, ωα . Como c é uma constante de integração gerada na obtenção da equação 
5, pode-se arbitrá-la (c=1), ficando os parâmetros incógnitos reduzidos a 3 
( βωα e, =s/c). Infelizmente isso não reduz a complexidade do problema, pois 
ainda é necessário determinar os valores destes parâmetros que maximizam a 
condição de filtro ótimo (eq. 4). Se não bastasse, falta impor o critério de resposta 
múltipla. Como uma solução analítica para este problema é inviável, um processo 
de otimização numérica é recomendado. 
 A forma do filtro f(x) depende, então, da injunção de respostas múltiplas, isto 
é, depende das distâncias entre as respostas adjacentes (x max ). Em geral, o ideal é 
que as respostas adjacentes estejam o mais distantes possível, facilitando a 
separação do pico verdadeiro dos falsos. Segundo Canny (1986), quanto menor o 
espaçamento entre as respostas adjacentes, mais íngreme é a função f(x) na origem. 
Assim, um filtro muito íngreme, em relação à origem (maior s, eq. 6), beneficia o 
critério de localização, mas não é favorável aos outros critérios. Por outro lado, um 
filtro menos íngreme, em relação à origem (menor s), é desfavorável ao critério de 
localização, mas os critérios de detecção e de respostas múltiplas são beneficiados. 
 Portanto, o critério de otimização numérica mencionado acima deve encontrar 
um conjunto de parâmetros que balanceie otimamente os três critérios. Canny 
(1986) apresenta a seguinte expressão matemática para o critério de resposta 
múltipla: 
 

Σ=
σ

r
)0('f

s
                                                   (7) 

 
onde sσ  é o desvio-padrão do ruído e r é o fator de desempenho de resposta 
múltipla. O fator r varia no intervalo [0, 1] e, quanto mais próximo estiver de 1, 
mais afastadas estarão as respostas múltiplas. 
 Os resultados obtidos por otimização numérica para vários filtros são 
apresentados na tabela 1. O maior valor de r obtido usando otimização numérica é 
0,576. Este valor corresponde ao filtro n.º 6 da tabela 1 que, por apresentar um 
melhor balanceamento é denominado filtro ótimo. Entretanto, caso se esteja 
disposto a tolerar uma ligeira redução no desempenho r de resposta múltipla, pode-
se obter uma melhora significativa nos outros dois critérios. Por exemplo, os filtros 
4 e 5 têm um produto ΣΛ.  significativamente melhor que o filtro 6 e somente uma 
pequena redução de r. 
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Tabela 1 - Parâmetros dos filtros  e medidas de desempenho de vários filtros 
n maxx  ΣΛ  r α  ω  β  

1 0,15 4,21 0,215 24,5955 0,12250 63,97566 
2 0,3 2,87 0,313 12,4712 0,38284 31,26860 
3 0,5 2,13 0,417 7,85869 2,62856 18,28800 
4 0,8 1,57 0,515 5,06500 2,56770 11,06100 
5 1,0 1,33 0,561 3,45580 0,07161 4,80684 
6 1,2 1,12 0,576 2,05220 1,56939 2,91540 
7 1,4 0,75 0,484 0,00297 3,50350 7,47700 

                     Fonte: Canny, 1986. 
 
4  APROXIMAÇÃO PARA O FILTRO ÓTIMO 
 O filtro ótimo (n.º 6, tabela 1) pode ser aproximado pela primeira derivada da 
função Gaussiana G'(x). 
 A razão para que se utilize esta função, reside no fato de que ela apresenta 
uma forma analítica simples e, dada sua separabilidade, é eficiente para computar a 
extensão bidimensional do filtro. Para o momento, serão comparados o desempenho 
teórico da primeira derivada da função Gaussiana com o operador ótimo. 
 O filtro f(x) fica então aproximado por: 
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 Os índices de desempenho para este operador são: 
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Figura 1 - Detetores ótimo e Gaussiano. (a)Detetor ótimo de bordas; e 

(b) Primeira derivada da função Gaussiana. 
 
 Os valores dos critérios ( )Λ(f'.Σ(f) e r) são bastante semelhantes, ocorrendo o 
mesmo com a resposta de impulso dos dois operadores (figura 1). Notar que as 
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respostas de impulso de ambos os filtros são bastante semelhantes, o que 
intuitivamente sugere um desempenho semelhante. 
 
5  ASPECTOS ALGORÍTMICO E COMPUTACIONAL 
 No que diz respeito aos aspectos algorítmicos e computacionais, serão 
expostos abaixo alguns detalhes que se destinam à implementação do processo de 
detecção elaborado por Canny. Como se sabe, a convolução e a diferenciação são 
associáveis e a Gaussiana separável. Dessa forma, pode-se efetuar, a princípio, a 
suavização da imagem com o filtro de suavização Gaussiano, usando filtragem 
separável (Jain et al., 1995). O resultado será uma matriz de dados S[i, j], dada por: 
 

S[i, j] = G[i, j, σ ] * I[i, j]                                       (10) 
 
onde * denota a convolução, I[i, j] é a imagem de entrada, G[i, j, σ ] é o filtro 
Gaussiano, e σ  é o desvio-padrão da Gaussiana, responsável pelo controle do grau 
de suavização.  
 Esta etapa, por ser bastante usual, não requer uma explicação mais 
aprofundada. Detalhes podem ser encontrados em Jain et al. (1995). 
 O gradiente da matriz suavizada S[i, j] pode ser então computado por uma 
máscara 2x2 de aproximações de primeira diferença, para produzir duas matrizes de 
derivadas parciais P[i, j], derivada em x, e Q[i, j], derivada em y (Jain et al., 1995): 
 

P[i, j] ≅  (S[i, j+1] - S[i, j] + S[i+1, j+1] - S[i+1, j])/2                (11) 
 

Q[i, j] ≅  (S[i, j] - S[i+1, j] +S[i, j+1] - S[i+1, j+1])/2                (12) 
 
 A magnitude e orientação do gradiente são computadas por fórmulas de 
conversão de coordenadas retangulares para polar: 
 

22 j]Q[i,j]P[i,j]M[i, +=                                           (13) 
 

)j]P[i,j],,arctan(Q[ij][i,θ =                                         (14) 
 
onde a função arco-tangente toma duas componentes, em y e em x, e gera o ângulo 
da direção do gradiente. 
 Sabendo-se que pontos de borda são máximos no resultado da filtragem 
(M[i,j]), pode-se, então, selecionar estes pontos e obter uma melhor localização para 
a borda através da técnica de supressão não máxima. A supressão não máxima 
consiste na eliminação de pixels cujos valores não são máximos locais, em perfis 
limitados, na direção perpendicular à borda, ou seja, busca-se, na direção do 
gradiente da imagem, por valores de pixels que são máximos locais. Portanto, a 
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supressão não máxima é uma técnica eficiente para afinar os cumes largos da matriz 
M[i, j]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figura 2 – Supressão não máxima. (a) Esquema de supressão não máxima para θ = 

45º; e (b) Setores considerados para a supressão não máxima. 
 
 A figura 2(a) ilustra o caso onde o pixel central (c, l) é examinado. O valor de 
(c, l) é um máximo local e a direção do gradiente é de 45º. Neste caso, supondo que 
uma máscara 3x3 percorre M[i, j] e compara a magnitude do gradiente do pixel 
central (c, l) com a magnitude de seu vizinho no sentido do gradiente (c+1, l-1) e 
com a magnitude de seu vizinho no sentido contrário ao do gradiente (c-1, l+1), 
verifica-se que os pixels em cinza terão seus valores igualados a zero. 
 O algoritmo começa por limitar o ângulo θ [i, j] do gradiente em um dos 
quatro setores da figura 2(b): 
 

j])θ[i, (Setorj]ζ[i, =                                            (15) 
 
 Esta forma de distribuição de setores é proposta em Jain et al. (1995) e tem 
como objetivo classificar ângulos intermediários do gradiente por setores, visto que, 
na prática, pixels vizinhos do pixel de referência estarão em um destes quatro 
setores. Estabelecidos os setores, uma máscara 3x3 é passada, de modo que seja 
feita a comparação do pixel central M[i, j], ao longo da linha do gradiente, 
comparando-o com seu dois vizinhos, de acordo com o setor ]j,i[ζ determinado. 
Este processo afina de modo geral os cumes até a espessura de um pixel. Assim, 
considerando esta etapa tem-se: 
 

j])ζ[i,j],snm(M[i,j]N[i, =                                       (16) 
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onde N[i, j] denota o processo de supressão não máxima. Os valores não nulos em 
N[i, j] correspondem a picos em M[i, j]. 
 Apesar da filtragem Gaussiana suavizar a imagem inicialmente, N[i, j] conterá 
muitos fragmentos de bordas falsas causadas por ruídos e detalhes de textura. O 
contraste dos fragmentos de bordas falsas é pequeno e pode-se pensar em eliminar 
detalhes espúrios por meio de uma limiarização aplicada em N[i, j], ou seja, os 
valores N[i, j] abaixo do limiar serão mudados para zero. 
 Mesmo com a aplicação da limiarização, as bordas falsas ainda ocorrerão. A 
permanência de bordas falsas, após a limiarização de N[i, j], pode ter como motivo 
a escolha de um limiar τ  baixo (falso positivo) e/ou pela ocorrência de porções de 
contorno real que podem ter sido perdidos (falso negativo) devido à suavização do 
contraste da borda por uma sombra ou devido à escolha de um limiar τ  alto 
demais. A escolha do correto limiar é difícil e envolve tentativa e erro. 
 Um esquema de limiarização eficaz envolve o uso de histerese, que consiste 
na limiarização com dois limiares 1τ  e 2τ , com 1τ  ≅  2 2τ ou 1τ  ≅  
3 2τ (Parker, 1997). 
 Aplica-se a limiarização duas vezes, em N[i, j], uma com 1τ  e outra com 

2τ , e se obtém, respectivamente, duas imagens limiarizadas T 1 [i, j] e T 2 [i, j]. 
Dessa forma T 1  conterá poucas bordas falsas, porém poderá ter falhas de contorno 
(falsos negativos). O algoritmo de dupla limiarização liga bordas por curvas. 
 Quando o algoritmo encontra o fim de um contorno em T1 ele busca em T2, 
através de uma vizinhança-de-8, as bordas que podem ser ligadas ao contorno em 
T1. O algoritmo continua a completar bordas de T1, a partir de pontos buscados em 
T2, até que as descontinuidades de bordas de T1 tenham sido eliminadas ou que não 
hajam pontos em T2 que possam ser aproveitados. 
 
6  RESULTADOS EXPERIMENTAIS 
 Nesta subseção são apresentados alguns resultados e a avaliação do processo 
de detecção de bordas de Canny. Os resultados obtidos foram gerados através de 
um programa de computador em linguagem C. 
 O processo de detecção de bordas foi aplicado em uma imagem sintética 
(figura 3(a)) e em uma imagem real (figura 4(a)). De acordo com a teoria de Canny, 
os limiares de histerese foram mantidos fixos, sendo que os limiares maior e menor 
correspondem respectivamente a 30% e 80% da escala de valores de magnitude. Os 
desvios-padrão da Gaussiana utilizados para suavização da imagem foram os 
seguintes: σ = 1 nas figuras 3(b) e 4(b) e σ = 3, nas figuras 3(c) e 4(c). A imagem 
sintética foi simulada no software Paint Shop Pro™ e nela foi adicionado 25% de 
ruído. 
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(a)                                          (b)                                         (c) 
Figura 3 – Resultados com uma imagem sintética. (a) Imagem simulada; (b) 

Resultado obtido com σ =1; e (c) Resultado obtido com σ =3. 
 
 
 
 
 
 
 
 
 
 

(a)                                          (b)                                         (c) 
Figura 4 – Resultado com uma imagem real. (a) Imagem; (b) Resultado 

obtido com σ =1; e (c) Resultado obtido com σ =3. 
 
 Tanto na detecção com a imagem sintética como na detecção com a imagem 
real, pode-se ver nitidamente que quanto maior o desvio-padrão (σ ), menor a 
quantidade de bordas espúrias. É necessário, no entanto, se tomar cuidado com o σ  
adotado na suavização pois, se for muito alto, haverá um borramento das bordas e, 
consequentemente, um decréscimo na localização das mesmas. Verifica-se em 
ambas as imagens, mesmo aquelas detectadas com alto σ , que praticamente não 
houve fragmentação das bordas, o que comprova a eficácia do "processo de 
completar bordas" com os resultados do histerese. O detetor também se mostrou 
eficiente na localização das bordas. Tal desempenho é devido à supressão não 
máxima, que reduz as bordas a um pixel de espessura (afinamento). Cabe ressaltar 
ainda que, apesar do baixo contraste apresentado na figura 4(a), muitas bordas são 
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detectadas, pois a supressão não máxima utiliza informações locais, adaptando-se 
aos níveis de escala de cinza encontrados durante o processo. 
 Como pôde ser visto acima, para que a quantidade de bordas espúrias seja 
reduzida, deve-se utilizar um alto valor para o desvio-padrão na etapa de 
suavização. No entanto, dependendo da aplicação a que se destina a detecção, isto 
não é aconselhável. Segundo Ziou e Tabbone (1997), a suavização efetuada com 
um alto valor para o desvio-padrão possui como efeito indesejável a perda de 
informação e o deslocamento das estruturas relevantes da imagem. Este segundo 
efeito pode ser verificado nas figuras 5 e 6, onde estão plotadas as bordas detectadas 
sobre as respectivas imagens originais. Na imagem sintética pode-se verificar 
nitidamente o deslocamento das bordas quando o desvio-padrão utilizado é maior 
que o necessário (σ =10) . Neste caso, o desvio-padrão a ser utilizado deveria ser 
inferior a 1, pois esta imagem foi produzida sem a introdução de ruído. 
 Exemplificando ainda a perda de informações e o  deslocamento das bordas 
proeminentes, pode-se verificar a imagem 6. Nesta imagem, que possui um nível de 
detalhamento superior ao da imagem 5, pode-se verificar a perda de informação 
relevante. Para que se possa ter uma boa noção sobre a perda de informação, a 
comparação entre as bordas plotadas na imagem 6 e a figura 4(a) deve ser efetuada. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Através dos exemplos apresentados e analisados pôde-se constatar  
visualmente a expectativa teórica a respeito do processo de detecção de bordas de 
Canny. Em relação ao tempo computacional, o processamento das imagens 
utilizadas nos experimentos não tomou mais que três segundos num Pentium III 860 
MHz e 256 MB de memória RAM. 
 
7  CONCLUSÕES 
 Neste trabalho foram apresentados os fundamentos teóricos, algorítmicos e a 
avaliação pertinentes ao processo de detecção de bordas desenvolvido por Canny. 
Foram detalhados os passos integrantes do processo, bem como, as implicações 

Figura 5 – Deslocamento das 
bordas da imagem para σ =10

Figura 6 – Deslocamento das 
bordas da imagem para σ =8
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práticas destas etapas. Foram apresentados experimentos efetuados com imagens 
sintética e real, dessa forma, as expectativas teóricas puderam ser verificadas na 
prática. 
 O processo de detecção de bordas de Canny mostrou-se bastante flexível, 
independente da origem da imagem utilizada, permitindo a obtenção de informações 
de contorno com alta qualidade e riqueza de detalhes, mesmo quando a imagem 
possuía baixo contraste. Por estas razões, o uso do detetor de Canny fornece bons 
resultados, podendo auxiliar qualquer processo automático ou semi-automático de 
extração de feições em imagens digitais e, em particular, feições cartográficas. 
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