1. Introduction

Fiambalá ("house of the wind" in the language of the original inhabitants), is a tectonic valley located in the southern portion of the geological region known as Puna, Catamarca Province, Argentina (27° 41´S; 67° 37´W; Figure 1). This partially-enclosed valley is protected by high-mountain ranges and presents from north to south three aligned oases: Palo Blanco, Medanitos and Fiambalá (Figure 1). The Tatón dune field is located to the Medanitos wetlands and consists of transverse dunes that migrate eastwards climbing to the Fiambalá Range in response to dominant westerly winds (Isla and Espinosa 2017). The Medanitos oasis is influenced by an intense desertification process (Rivero & Rivero 2010), that has been recently enhanced (Navone 1998). Local winds known as “Zonda winds” are influenced by topographic features, and cause rapid changes in the air temperature, with gust speeds over 40 m/s (Puliafito et al. 2015). Although sand is dominant at the Fiambalá Valley, there is a grain-size selection in relation to other valleys located to the east (Vargas Aranibar & Niederle, 2010; Couso et al. 2011).

El Niño events were known before the Spanish colonized Peru because of their consequences on the anchovy fishery. They were known as seasonal heavy rainfalls and rapid floods. Immense volumes of water transported across the Pacific Ocean during the so-called “El Niño” or ENSO years (Vargas et al. 2000; Andreoli and Kayano 2005). Bjerknes (1969) postulated that ENSO originates when Sea Surface Temperatures (SST) anomalies in the Pacific Ocean
cause trade winds to strengthen or slacken ocean circulation changes that at the same time induce changes in the SST. Although much information has been collected from different projects there are still some doubts about the interactions that triggered these ENSO events (Kleeman and Moore 1997; Neelin et al. 1998; Sheinbaum 2003, Dijkstra 2006). Although these anomalous years are known by their climatic and oceanographic consequences, their hydrological responses in South American rivers have not been carefully reported. One to the main reason is the lack of information about rains records (Sun et al., 2015) or about long and continuous hydrological records (Ward et al. 2016).

ENSO-triggered phenomena increased in frequency and magnitude during the end of the XX century compared to previous decades (Garreaud et al. 2009; Vargas et al. 2006; Isla 2018). According to Puna records (Southern Peru and Northern Chile), the ENSO related heavy rainfalls and debris-flow events occurred in 1925, 1940, 1982 and 1997-98 (Vargas et al. 2006).

Figure 1: A) Location of the study area. B) Tatón dune field in relation to the three oases of the Fiambalá Valley.

Dune fields are widely distributed along the central-western part of Argentina (Tripaldi et al. 2010). This region is within the so-called South American Arid Diagonal (SAAD); an area extended from Peru to Patagonia with significant effects during ENSO anomalous years (Isla et al. 2003; Isla 2018; Isla & Espinosa 2021). Winds are thought to dominate the ocean circulation in the Southern Hemisphere due to the asymmetric distribution of continents and oceans. Westerly winds are more frequent and stronger than in Northern Hemisphere (Sijp & England 2009). Winds therefore control climate and the regional exchange of CO₂ between the Southern Ocean and the atmosphere (Russell et al. 2006; Sime et al. 2013; Hinojosa et al. 2017). This relationship wind-ocean became of special concern in the sense that it can affect the future climate controlling the CO₂ sinking efficiency towards the deep ocean (Kohfeld et al. 2013). Moreover, aeolian transport and their associated wind regimes are very important for the evolution of modern desert landscapes. Climate changes are of special concern to Central Argentina in relation to the origin of ancient lakes at altitudes above 3000 m (Garleff et al. 1993; Clapperton et al. 1997) and the desertification processes (also specially related also to recurrent volcanic eruptions) that controlled human occupation. These facts increase the importance of getting a better understanding about climate and its relation to morphologic changes.

The aim of this paper is to analyse the origin, composition and dynamics of the dune field at Tatón, and also to discuss the deflation processes involved in transport of finer particles to other valleys from the region. In this sense, the sand deposits of the Fiambalá Valley are compared to the loess deposits of the Belén Valley to the east (Figure 1A). This information is also handled in order to understand environmental changes across the South American Arid Diagonal.

2. Setting

The Tatón dune field is located in the eastern side of the Bolsón de Fiambalá (Figure 1), a tectonic basin opened to the south (González Bonorino 1972). This valley, location of several archeological deposits, is surrounded by several ranges over 4000 m height: the Fiambalá Range to the east and the Narváez Range to the west (Fig 1). The bottom of the valley is more than 1700 m above mean sea level (MSL) in the north and 1450 m in the south. The region has a high risk of earthquakes; at the Belén-Andalgalá-Pipanaco basin, immediately to the east (Figure 1), earthquakes are more common towards the ranges located to the north (Nóbile, 2013). The most recent earthquakes recorded 5.8 Mw (May 28, 2002) at the Velasco Range, and 6.2 Mw (September 7, 2004) at the Ambato Range (Nóbile 2013).
Precipitation is extremely scarce (50 to 160 mm/yr), exclusively concentrated during the summer months. The Zonda winds blow down the Andes, and load the atmosphere with dust eroded from arid soils (Pulinaftito et al. 2015). At tropical-subtropical latitudes, the Andes acts as a climate barrier with dry conditions to the west and moist conditions to the east (Garreau et al. 2009). Between 15°S and 30°S the topographically driven filtering effect of the Cordillera de los Andes is maximum. ENSO effects are more significant to the Western side of the Andes (Bennet et al. 2016).

The central part of the Fiambalá Valley is subject to aggradation where fluvial and eolian processes alternated during the Quaternary. In modern times, fluvial processes were diminishing (Isla & Espinosa 2017) while eolian effects were becoming dominant. The Abaucán River (also called Salado, Colorado or Bermejo) flows from north to south within this asymmetric valley (Navone 1998; Paoli et al. 2011), receiving the discharge of the Chaschuil and De la Troya rivers from the west. The watershed has an area of approximately 28,300 km². At Tinogasta, the mean river discharge was estimated in 2.54 m³/s with a maximum of 84.7 m³/s (1948-49) and minimum records of 0.96 m³/s (1941-42; Isla & Espinosa 2017). Discharge reduction in the last decades is in accordance with reported desertification processes (Ratto et al. 2013) and channel erosion (Niz 2003). These processes are affecting the three oases of the valley: Palo Blanco, Medanitos (Rivero and Rivero 2010) and Fiambalá, and are thought to occur since the Middle Holocene (Tchlinguirian & Morales 2013).

The ranges surrounding Bolsón de Fiambalá are composed of different lithologies: granites at Sierra de Fiambalá and Sierra de Zapata, high-grade metamorphic rocks at Sierra de Copacabana and Sierra de Zapata, and sedimentary and volcanic rocks at Cerro Negro de Rodríguez and Sierra de Narváez (Carrapa et al. 2006; Castro 2007; Montero López et al. 2009). The region is characterized by low-angle thrust faults associated with frequent earthquakes with magnitudes between 3 and 5 (Richter scale; Nobile 2013). Several volcanic and volcaniclastic Quaternary deposits were reported from the Laguna Blanca region (Turner 1973; Fajardo et al. 2018). The lowermost are composed of dacitic tuffs (Laguna Blanca Formation) overlain by andesitic and basaltic rocks (Negro Carachi and Los Rastrojos formations; Turner 1973). Modern pumicite clasts were assigned to the eruption events of the Cerro Blanco, Buenaventura Range. This small dome, located to the north of the valley, has provided biotite, quartz inclusions and small percentages of volcanic glass and lithic fragments (Montero López et al. 2005). The last pumicite extrusions occurred after 5500 years BP (Montero López et al. 2010; Ratto et al. 2013).

The Fiambalá tectonic valley received coarse material from the west. Red sands composing remnants hills, covered by gravel are common at the bottom of the valley. Paraglacial megafans are also common related to deep tectonic valleys and depressions (Suvires et al. 2014). The coalescence of alluvial fans at the foot of the ranges of the west produces bajada deposits. A smaller fan is attached to the eastern side of the valley, attached to the Fiambalá Range, and close to the well-known thermal springs. Earthquakes recurrence can be confirmed by the convoluted lamination at the bottom of the Holocene shallow lakes (Ratto et al. 2013). At the Tinogasta area, a deposit of reddish sands was reported as Pleistocene (Sosic 1972). Another sand field (68 x 15 km) is attached to the ranges on the East side of the valley, and extends in a north-south direction. Desertification has been occurring during the last 4500 years (Montero López et al. 2009). Eolian deposits with lag gravels on top (Niz 2003) are very common close to Medanitos and confirm the frequency of deflation processes. Wind deflation is therefore considered as an ongoing process in the modern dispersal of sand and silt (Galiet et al. 2013; Gili 2014).

3. Methods

A Digital Elevation Model (DEM), spatial resolution of 90 m, was downloaded from http://srtm.csi.cgiar.org/. This information was handled with the Global Mapper v.7.04 program (www.globalmapper.com). Historic Google Earth images were handled to analyse the dune changes at the Tatón sand ramp (Figure 1). Westerly-wind frequency in the Southern Hemisphere were reanalysed from NOAA monthly data (Kalnay et al. 1996; https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.derived.surface.html). In order to test the ENSO effects on rivers of the region (San Juan, Mendoza, Tunuyán, Desaguadero) their monthly discharges were downloaded from http://bdhi.hidricosargentina.gob.ar and analysed.

Sand samples were sieved at 0.5 phi intervals and evaluated according to ordinary statistical parameters (Folk & Ward, 1957). Mineral grain compositions from bulk samples were analysed using a petrographic microscope. Results were included in a data base managed with Geographic Information System (Arc View) procedures. Alós Palsar (SAR, Band L, 23 cm) images were analysed and compared to OrbView images, in order to search the groundwater flow and seepage phenomena within the Tatón sand field.

4. Results

4.1. Tatón sand ramp

The accumulation of sand in the eastern area of the valley denotes the action of intense and frequent winds. These sand ramps extend from altitudes of 1600 to 2600 m above MSL (Figure 1). Transverse and longitudinal dunes oriented in response to winds from the SW are common in the Eastern side of this valley close to the village of Tatón (Isla & Espinosa 2017). Subordinated, reverse-crested and triangular dunes are also common (Figure 2). Within this dune field,
interdune deposits are located 1.4 m above the present interdune depressions. Some of these deposits are multiple in the sense that they respond to several of these stability periods (Figure 2).

Fine sand dominates across the sand ramp although medium sand was sampled at the lee side of some dunes (Table 1). Several former interdune depressions are scattered at the dune field, also composed of medium sand. Coarse sand was located forming granule ripples at the dune foot on the lee sides. Heavy minerals are segregated at the lee slopes of some dunes (Figure 3).

Fine sand from the Fiambalá Valley is dominantly composed of quartz (65-40 %), pumicite and volcanic glass (13-28 % together). Lithic fragments are only 8-11 %, feldspar 4-7% and opaques 3-6 %. Far from the Cabo Blanco fallout, in Tinogasta, the percentages of opaques increase to 20 % (Table 2).

![Figure 2: a) Reverse dunes at Tatón; b) Triangular dunes. c) Interdune deposit composed of medium sand and elevated from the present interdune bottom; d) Two superimposed interdune deposits.]

Table 1: Grain-size variations across the Tatón dune field.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Grain flow</th>
<th>Fossil interdune</th>
<th>interdune</th>
<th>Hanged interdune</th>
<th>Lee side</th>
<th>Stoss side</th>
<th>Granule crests</th>
<th>Pumicite bearing sand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (microns)</td>
<td>242.4</td>
<td>179.8</td>
<td>297.4</td>
<td>347.0</td>
<td>295.9</td>
<td>215.1</td>
<td>895.4</td>
<td>316.0</td>
</tr>
<tr>
<td>Mean (ø)</td>
<td>2.045</td>
<td>2.476</td>
<td>1.750</td>
<td>1.527</td>
<td>1.757</td>
<td>2.217</td>
<td>0.159</td>
<td>1.662</td>
</tr>
<tr>
<td>Sorting</td>
<td>0.467</td>
<td>1.812</td>
<td>0.787</td>
<td>1.299</td>
<td>0.903</td>
<td>0.488</td>
<td>1.354</td>
<td>0.570</td>
</tr>
<tr>
<td>Skewness</td>
<td>0.055</td>
<td>-0.103</td>
<td>0.084</td>
<td>0.032</td>
<td>0.431</td>
<td>0.012</td>
<td>0.688</td>
<td>0.360</td>
</tr>
</tbody>
</table>

Table 2: Mineral percentages (bulk samples) from sand dunes of the Fiambalá Valley

<table>
<thead>
<tr>
<th>sites</th>
<th>Lat S</th>
<th>Long W</th>
<th>Mz</th>
<th>R</th>
<th>Qz</th>
<th>P+G</th>
<th>Lit</th>
<th>Opa</th>
<th>Fel</th>
<th>Lam</th>
<th>Pir</th>
<th>Gar</th>
<th>Tit</th>
<th>Tou</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tatón</td>
<td>27°20'37"</td>
<td>67°32'19"</td>
<td>208</td>
<td>0.60</td>
<td>65</td>
<td>13</td>
<td>8</td>
<td>5</td>
<td>7</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Agua del Medio</td>
<td>27°27'11"</td>
<td>67°34'44"</td>
<td>178</td>
<td>0.42</td>
<td>51</td>
<td>23</td>
<td>11</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Abarcan River</td>
<td>27°30'34"</td>
<td>67°35'19"</td>
<td>132</td>
<td>0.30</td>
<td>45</td>
<td>28</td>
<td>10</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Tinogasta</td>
<td>28°15'20"</td>
<td>67°26'29"</td>
<td>138</td>
<td>0.44</td>
<td>38</td>
<td>-</td>
<td>38</td>
<td>20</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

References: Mz: mean grain size (microns); R: roundness (chart of Krumbein and Sloss, 1963); Qz: quartz; P+G: pumicites + volcanic glass; Lit: lithic fragments; Opa: opaques; Fel: feldspar; Lam: lamprobolite; Pir: piroxenes; Gar: garnet; Tit: titanite; Tou: tourmaline.
4.2. Fluvio-eolian aggradation

Holocene sequences (La Hoyada and Ojo de Agua profiles) have been described and dated at the NW corner of the valley, attached to Sierra de Narvaez (Montero López et al. 2009; Figure 1). Along the Abaucán River, at the valley centre, which receives water from the west via the De la Troya and Colorado rivers, several Holocene aggradation sequences of “bajada” deposits (defined as coalescence of alluvial fans) were also described (Figure 4). Other alluvial deposits have been surveyed further south, close to Tinogasta (Sosic 1972; Niz 2003).

The Pampa Blanca profile is located north of the town of Fiambalá (27° 38’ 45”S; 67° 36’ 15”W; Figure 1). It starts with silty fine sands (0.1 m) ending with a disconformity on top (Figure 4). This level is overlain by approximately 2 m of medium-coarse sand with small-scale and trough crossbedding. Lag gravels occur at the base of some strata. Lenticular and wavy bedding also occur. After another disconformity, 0.67 m of silty sands with many burrows of up to 4 cm diameter were deposited. In a nearby outcrop, a diatomite layer of 0.13 m width is placed 1 m below the upper surface.

The Mayorazgo profile is about 8.4 m thick, located 18 km north of Tinogasta (27° 54’ 50”S; 67° 36’ 44”W). The outcrop was cut by the Abaucán River. The base is composed by 0.8 m of a polymictic conglomerate deposit with boulders up to 0.3 m. Overlying, there are 2.6 m of fine to medium sand, with gravel clasts, containing trough and diagonal crossbeds. After a lamination-bearing erosive limit overlays a 0.54 m thick deposit of coarse sand with some lenticular strata (Figure 4). It is followed by a 0.03 m layer of polymictic gravel with unsorted clasts of 2 cm diameter. The sequence continues with 3.4 m of medium to coarse sand with different primary structures (crossbedding, normal gradation, horizontal lamination). After another disconformity, the sequence finishes with 1 m of whitish sand.

Banda de Lucero profile (28° 10’ 34”S; 67° 28’ 37”W) is very close to Copacabana locality. The Abaucán River is here called Colorado. The described sequence initiates with massive, red silty sand (0.3 m). It continues with fine horizontally-laminated sand (0.2 m). Overlying, 0.5 m of stratified silty sand (strata of 5-10 cm) were measured. Towards the top, these sands contain root burrows (0.5) finishing with soil on top.
The fate of the groundwater was analysed by the interpretation of SAR images. Considering the penetration of band L into the sorted fine sand of the dune field, it is clear that the Tatón River seeps under Holocene aeolian deposits after getting out of the Fiambalá Range (Figure 5).

4.3. Volcaniclastic inputs and loess segregations

Both Argentine loess deposits—the Pampean and the so-called Neotropical—, have significant volcaniclastic components, either during the Holocene and during modern times. Some historic eruptions have deposited ash onto the Pampean and Chaco-Pampean plains (Sayago et al. 2001; Zárate 2003; Iriondo & Krohling 2007; Simonella 2013; Gili 2014; Milana & Krohling 2017; Isla et al. 2018; Figure 6).

The Pampean loess was defined by analogy to the European loess as derived from former glacial deposits (Frenguelli 1955); although lately the composition of this loess (and the Chinese’s) was considered as completely different from the European one. The Neotropical Loess was defined for the fine sediments deposited on the Northern plains of Argentina between 20 and 30° S (Sayago 1995). The Andean piedmont, extending west of the Desaguadero-Salado-Curacó (DSC) fluvial system was indicated as the provenance area for this loess accumulation (Zárate & Tripaldi 2011). It extends from N to S along the South American Arid Diagonal (SAAD, Figure 6) and operating during glacial and interglacial periods (Gili et al. 2017). Today, the transition between the sand dunes
recognised at some tectonic valleys (Calchaquíes valleys, Tinogasta and Pipanaco depressions) and the loessic deposits of the east (Sayago et al. 2001) can be related to the concept of desert loess. At the Shink al archaeological site (Belén Valley), coarse silty very fine sand was sampled. In this region, the downwind transition from sand to loess can be assigned to the deactivation of the DSC fluvial system. The transitions between sandy and loessic deposits were also reported for the Pampean loess, either in a spatial (Iriondo 1997) and temporal scales (Isla et al. 2010).

The contribution of volcanic glass and pumicites to these sand fields can be explained by their spatial relations to recent eruptions. Acid volcanoes are dominant within the Andean Cordillera of the Catamarca Province (Figure 7). Ash contribution occurred since the Miocene to the Holocene at the region of Cerro Blanco-La Hoyada (Montero López et al. 2010). Modern dunes contain up to 12-28% of pumicite clasts (Isla & Espinosa 2017). On the other hand, basaltic and acid volcanoes also characterised the Cordillera further south, between 27 and 33 degrees S (Figure 7). Modern ash fallouts from volcanoes of Patagonia, such as the Cordon Caulle Complex (eruptions of 1960 and 2011), Calbuco (1960) and Chaitén (2008), supplied significant quantities of tephra (Daga et al. 2014). Modelling of these pumice eruptions help to validate the probable contribution to the Pampean loess (Osores et al. 2013). Although these models were improved in the last years there are processes of ash aggregation that can underestimate or overestimate the ash plumes (Brown et al., 2012).

5. Discussion

Since the Holocene, eolian dispersal effects have caused significant problems to the inhabitants of the Fiambalá valley (Rivero & Rivero 2010). Ancient cultures were repeatedly threatened by desertification processes in the last 4500 years (Montero López et al., 2009; Ratto et al. 2013). At the same time, since Mid Holocene there was an increasing influence of El Niño events (Vargas et al. 2006).

Along the SAAD, the rivers draining from the Andes (San Juan, Mendoza, Tunuyán, Desaguadero) have peak discharges in coincidence with ENSO anomalous years. These river discharges were explained in details in a previous report, being 1941, 1982/83 and 1997/98 the most significant peak discharges (Isla & Espinosa 2021; Table 3).

Table 3: Monthly peak discharges of rivers from the Colorado watershed

<table>
<thead>
<tr>
<th>river</th>
<th>locality</th>
<th>Monthly peak discharges</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Juan</td>
<td>Km 101</td>
<td>1972, 1987, 1997</td>
</tr>
<tr>
<td>Mendoza</td>
<td>Cacheta</td>
<td>1915, 1920, 1942, 1983</td>
</tr>
<tr>
<td>Desaguadero</td>
<td>Desaguadero</td>
<td>1942</td>
</tr>
</tbody>
</table>

Sediment supply is the key variable for the build-up of dune fields, and the wind selection of loess grain sizes (Halfen et al. 2016), even in tropical areas (Crouvi et al. 2010). For example, the Cangagua Formation in Ecuador was reinterpreted as belonging to wind-driven fine sediment delivered mainly by volcaniclastic processes (Clapperton & Vera 1986), and were similarly related to the Pampean loess (Clapperton 1993).

There are significant differences in the grain-size composition of the aeolian deposits of the Fiambalá and Belén valleys (Figure 1): the former composed dominantly by sand while to the western side of the Belén Valley it is composed of loess (Nóbile 2013). This segregation of saltation-dominated sand to suspension-dominated loess has been assigned to the response of altitude variations (Pye 1995; Sweeney et al. 2005). The loess-sized particles are resuspended during high-energy wind events, entrained by deflation processes from the Fiambalá Valley, and settling to the east at the Belén Valley (Figure 8).
Figure 8: Modes of wind transport across the Fiambalá Valley (modified from Pye 1995; & Gili 2014).

However, these conditions are not so strict in their responses when considering turbulence effects. Quartz particles of 70 µm can be transported by saltation or modified saltation in flows having weak wind-derived shear and turbulence. However, they can be also transported in short-term suspension in flows with strong friction and turbulence (Ujvari et al., 2016). Particles below 10-20 µm can be picked up and transported hundreds to thousands of kilometres by different modes of suspension transport: direct aerodynamic entrainment-resuspension, saltation bombardment/sandblasting and disaggregation/auto-abrassion (Ujvari et al., 2016).

The origin of fine sediment and the pathways of distribution and deposition by wind were described for several locations related to arid provenances (Wright 2001). The origin of the desert loess is an issue introduced during the 1980s (Tsoar & Pye 1987) and accepted in terms of the geomorphic mechanisms involved (Wright 2001). Although the suspended sediments collected in Puna were about 14 µm (Gaiero et al. 2013), samples collected south of the Puna were bimodal with one mode between 9-11 µm, and the other between 150 and 170 µm that were assigned to alluvial fans and borders of saline areas (Gili 2014). In this sense, significant climatic variations were recorded in Puna during Upper Quaternary and conditioned the aggradation of the tectonic valley (Schlidgen et al. 2016). The mid Holocene (5500-5300 years BP) was considered as an interval when the ENSO events dominate in Southern Peru and Northern Chile (Vargas et al. 2006). However, in this particular location of the Argentine Puna, this interval was dominated by volcaniclastic phenomena that should have buried any evidence of heavy rainfalls. The contorted structures of the ash layers from La Hoyada (8830-5480 years BP) and Ojo de Agua (5960-5040 years BP) profiles (Montero López et al. 2009) can be indicating humid conditions during the eruption of the Cerro Blanco Caldera. This ash availability at the Fiambalá Valley would have controlled the cultural gap between the Arcaic Period (circa 5000 years BP) and the Incas occupation (circa 500 years BP; Montero López et al. 2009).

Deflation processes would have also played a significant role in the occupation, evolution and decayment of the unique archaeological Incas site known as Shinkal de Quimivil, Belén Valley, Catamarca (Couso et al. 2011). Conditions were more unstable for humans to the west, at the Fiambalá-Tinogasta valley, due to the mentioned explosive volcanism and the recurrent seismicity (Montero López et al. 2009; Ratto et al. 2013). Environmental conditions changed the water and vegetation availability and therefore the conditions for herbivores and hunters populations (Ratto et al. 2013). Although significant climatic fluctuations succeeded during the Holocene in Puna (Tchilinguirian & Morales 2013; Schlidgen et al. 2016), at the Fiambalá Valley the episodic processes conditioned the continuity of human occupations. It is clearly concluded that ancient societies were particularly sensitive to these episodic processes (Montero López et al. 2009).

6. Conclusions

1. The sand ramp of Tatón is composed of a fine fraction derived from former alluvial-fan deposits. Loess-sized sediments were blown outside the Fiambalá valley to the neighbouring valleys to the east.
2. The sand ramp is modern considering that it is composed dominantly by ash blown in the last 5500 years.
3. These tectonic valleys of high altitude and oriented transverse to the westerly winds induce a grain-size selection from sand to loess.
4. Dacitic-trachitic volcanoes supplied ash and pumice clasts to the Panpean and/or Neotropical loess.

References

Milana, J. P., Kroohling, D. M., 2009. First data on volume and type of deflated sediment from Southern Puna
Plateau and its role as source of the Chaco-Pampean loess. Quaternary International 438, 126-140.

Tripaldi, A., Reijenstein, H., Reimer, R.W., 2005. Calib 5.0.1. calib.qub.ac.uk/calib

.Recebido 27 de fevereiro de 2019
Aceito 29 de julho de 2021