Definição dos limites volumétricos em estratificação de florestas plantadas

SYLVIO PELLICO NETTO
CARLOS ROBERTO SANQUETTA
JEFFERSON BUENO MENDES

RESUMO

A delimitação dos estratos em uma população florestal constitui-se um dos mais complexos problemas, quando se pressupõe minimizar o erro de amostragem do processo como um todo. Será tratado, neste trabalho, dos critérios que levam à minimização da variância da média do volume por unidade de área, bem como do estabelecimento dos limites dos estratos em termos de idade do povoamento, desde sua implantação até a rotação final. A ilustração da metodologia proposta foi feita em uma floresta de Pinus elliottii localizada em Campos Novos, estado de Santa Catarina.
Palavras-chave: estratificação, Pinus elliottii, volume

ABSTRACT

The construction of volumetric stratification in man made forests. The construction of strata in a forest population is rather a complex problem, when it is supposed to minimize the standard error of the sample as a whole. This paper will deal with the criteria to lead the minimization of the volume mean variance per area unit, as well as the construction of the strata as a function of the stand age, from its establishment to its rotation age. The illustration of the proposed methodology is presented for a slash pine plantation located in Campos Novos, in Santa Catarina state.
Key words: stratification, Pinus elliottii, volume

INTRODUÇÃO

A stratificação de uma população florestal, subseqüente à definição do número de estratos, deve ser efetuada pela delimitação de sub-populações, ou seja, pelo estabelecimento do limite dos estratos. Estes deverão atender, especificamente, condições de eficiência e factibilidade práticas na sua demarcação, bem como assegurar a máxima precisão na obtenção dos seus estimadores estatísticos.

A delimitação dos estratos deverá ser efetuada levando-se em consideração que a população florestal é constituída da totalidade dos plantios, e que

*Eng. florestal, M.Sc., Dr., Professor Senior da UFPR, Professor da PUC-PR - bolsista do CNPq
**Eng. florestal, M.Sc., Dr., Professor Adjunto do Departamento de Silvicultura e Manejo, UFPR
***Diretor da Silviconsult Ltda
a variável aleatória para processar este procedimento estatístico, será o volu-
me por hectare do que remanesce em pé até a rotação dos povoamentos
considerados.

Adicionalmente, deve-se levar em consideração que o processo de
crescimento de uma floresta segue uma determinada lei natural, caracterizado
por uma evolução diferencial nas suas intensidades acelerativas ao longo do
tempo de vida, configurando-se uma relação não linear entre a acumulação do
crescimento e o tempo consumido para sua efetivação.

A volumetria de árvores e dos estimadores por hectare será considerada
como informação já previamente efetuada, inclusive que um conjunto de “n”
unidades amostrais constitui a amostra total distribuída na população, configu-
rando-se um inventário contínuo efetuado em “k” ocasiões até a rotação final.

CONCEPÇÃO TEÓRICA PARA DEFINIÇÃO
DO LIMITE DOS ESTRATOS

No caso de estratificação florestal de plantações, esta deverá ser
implementada gradualmente, dados os plantios, em muitas situações, não
contêm ainda todas as classes de idade até a rotação final.

É comum e correto assumir a área reflorestada em um ano de plantio
como a unidade estratificada mínima.

SUKHATME et al (1984) afirmaram que cada estrato deve ser,
internamente, o mais homogêneo possível, relativo à variável de interesse, no
caso florestal o volume por hectare, ou seja, o estrato florestal deve ser
delimitado da forma a minimizar a sua variância interna (variância entre os
volumes das unidades tomadas dentro de cada estrato).

Para se separar os estratos, considerando-se sua estrutura e evolução
volumétrica, se requer um bom conhecimento de suas condições espaciais e
temporais, que poderão ser obtidas somente por inventário contínuo de toda a
população.

É relevante que se tenha previamente uma distribuição de frequências
da variável volume por unidade de área, previamente à estratificação, porém
esta realidade, considerando-se uma primeira abordagem da população, será
inviável.

Qualquer concepção teórica para subdividir a população em estratos
requererá o conhecimento da distribuição de frequências da variável utilizada
para estratificação; assim sendo, será necessário trabalhar com simulações ou
aproximações desta distribuição, ainda que valendo-se de experiências passa-
das conseguidas de florestas similares.

Considerando que X é a variável volume por ha e tem uma distribuição
de frequências f(x), tal que X é contínua e esta circunscrita no intervalo “a”
e “b”. Os pontos limítrofes de “L” estratos em que a população será sub-
dividida são \(x_1, x_2, x_3, \ldots, x_{L-1} \). Então, o mesmo estrato com limites \(x_{b-1} \) e \(x_b \) têm
como parâmetros:
Definição dos limites

\[P_h = \int_{x_{h-1}}^{x_h} f(x) \, dx \quad \text{para a} < x \leq b \]
(1)

onde \(P_h \) é a área sob a curva descrita por \(f(x) \) e, portanto, a proporção participativa do estrato.

\[\mu_h = \frac{1}{n_h} \int_{x_{h-1}}^{x_h} x \, f(x) \, dx \]
(2)

onde \(\mu_h \) é a média aritmética do estrato considerado e

\[\sigma_h^2 = \frac{1}{n_h} \int_{x_{h-1}}^{x_h} x^2 \, f(x) \, dx - \mu_h^2 \]
(3)

onde \(\sigma_h^2 \) é a variância do estrato considerado.

Se a intensidade amostral total "\(n \)" for conhecida, ou especificada, e se o objetivo do processo for minimizar a variância da média estratificada, conforme já apresentado por SUKHATME et al (1984), COCHRAN (1966) e também por PELLICO NETTO (1979), será usada a alocação da amostragem dentro dos estratos proporcional à sua variância, com custos constantes por estratos, conforme desenvolvido por NEYMAN (1934), e então:

\[n_i = \frac{n \cdot \sigma_h^2}{\sum_{h=1}^{H} n_h \sigma_h^2} \]
(4)

A variância da média estratificada é dada por:

\[s^2_{\text{est}} = \frac{1}{n} \left(\sum_{h=1}^{H} n_h \sigma_h^2 \right)^2 - \frac{1}{N} \sum_{h=1}^{H} n_h \sigma_h^2 \]
(5)

Como pode-se observar em (5), esta variância é função de \(P_h \) e de \(\sigma_h \), o que, para todos os estratos (L), a torna função dos limites dos estratos \(x_1, x_2, \ldots, x_{L-1} \).

Para efeito de simplificação, o fator de correção de populações finitas, expresso pelo segundo termo da variância da média em (5), será desconsiderado nesta demonstração.

O ponto referencial de partida é o de se encontrar os limites \(x_h \), tal que \(s^2_{\text{est}} \) seja mínima, o que pode ser obtido tomando-se sua derivativa em relação a \(x_h \) e igualando-a a zero \(\left(\frac{\partial s^2_{\text{est}}}{\partial x_h} \right) = 0 \), para se obter o conjunto de equações seguintes:
onde \(h = 1, 2, \ldots, (L-1) \).

Cada um dos termos deste conjunto de equações precisa ser conhecido e, para tal, segue as soluções seguintes:

Derivando (1) em relação a \(x_h \) tem-se:

\[
\frac{\partial P_h}{\partial x_h} = f(x_h)
\]

(7)

Tomando as igualdades (2) e (3) pode-se também escrever

\[
P_h \mu_h = \int_{x_h}^{x_{h-1}} f(x) \, dx
\]

(8)

\[
P_h (\sigma_h^2 + \mu_h^2) = \int_{x_{h-1}}^{x_h} x f(x) \, dx
\]

(9)

Tomando-se a derivativa de (8) e (9) respectivamente em relação a \(x_h \) para os seus dois lados e eliminando-se \(\frac{\partial P_h}{\partial x_h} \), dado este termo não participar da variação da média, tem-se:

\[
P_h \frac{\partial \sigma^2}{\partial x_h} = \frac{f(x_h)}{2 \sigma_h} [(x_h - \mu_h)^2 - \sigma^2]
\]

(10)

Por similaridade, pode-se concluir também que

\[
P_{h+1} \frac{\partial \sigma_{h+1}^2}{\partial x_{h+1}} = \frac{f(x_{h+1})}{2 \sigma_{h+1}^2} [(x_{h+1} - \mu_{h+1})^2 - \sigma_{h+1}^2]
\]

(11)

Substituindo os resultados de (7) a (11) em (6), obtém-se os pontos ótimos, usando-se a alocação de Neyman para repartição da amostragem

\[
\frac{\sigma_h^2 + (x_h - \mu_h)^2}{\sigma_h^2} = \frac{\sigma_{h+1}^2 + (x_{h+1} - \mu_{h+1})^2}{\sigma_{h+1}}
\]

(12)

onde \(h = 1, 2, \ldots, (L-1) \).

Observando-se a equação (12) pode-se denotar que a solução para \(x_h \) é complicada, dado \(\mu_h \) e \(\sigma_h^2 \) dependem de \(x_h \) para serem calculados, ou estimados, além do que, se forem delimitedos 10 estratos, a álgebra necessária para se isolar \(x_h \) é frustrante.

Concepções alternativas surgiram na literatura para se obter esta solução de maneira mais fácil. DAINENIUS & GURNEY (1951) propuseram que \(x_h \) fossem determinados tal que \(P_h \) e \(\sigma_h^2 \) sejam constantes.
Mais tarde MAHALANOBS (1952) e HANSEN et al (1953) propuseram que os limites dos estratos fossem tomados de tal forma a manter \(\bar{P}_h \) e \(\mu_h \) constantes.

SUKHATME et al (1984) consideram que ambas as sugestões anteriores resultam na mesma solução, desde que o coeficiente de variação do volume permaneça constante em todos os estratos.

Numa avaliação feita por SETHI (1963) ele aponta restrições às sugestões anteriormente propostas, o que não leva a uma adoção genérica das proposições anteriores.

A proposta que teve aceitação universal foi apresentada por DALENIUS & HODGES (1959), que consiste em trabalhar com os valores acumulados da raiz quadrada da função de frequência \(f(x) \) em toda a amplitude da variação da variável de interesse, ou entre “a” e “b”, conforme definido em (1) e os limites dos estratos, considerados como pontos ótimos, são obtidos a partir de

\[
\frac{h \cdot \text{Cum} \left(\frac{f(x)}{L} \right)}{1} \quad (13)
\]

onde \(f(x) \) são as frequências absolutas obtidas por classes da variável \(X \) e os valores cumulativos são obtidos sucessivamente com \(\sqrt{f(x)} \) para classe 1, \(\sqrt{f(x)} \) para classe 2, que se somam para essas duas classes, \(\sqrt{f(x)} \) para a classe 3, que se soma às duas outras anteriores e assim por diante.

Os limites \(x_h \) são obtidos a partir dos pontos mais próximos nas classes estipuladas para a variável \(X \).

PELILICO NETTO (1979) propôs uma demonstração teórica desta sugestão apresentada por DALENIUS & HODGES, valendo-se de uma simplificação que a torna acessível.

Considere que dentro de cada estrato a variável de interesse \(x_h \) se distribui como uma função retangular, como está apresentado na Figura 1. Nessas circunstâncias, assume-se que dentro de cada estrato somente o valor médio tem importância.

A função de frequência é definida por:

\[
f(x) = \begin{cases}
\frac{1}{(x_h - x_{h-1})} & \text{para } x_{h-1} < x \leq x_h \\
0 & \text{c.o.c.}
\end{cases} \quad (14)
\]

Tomando-se a média para cada estrato tem-se:

\[
E(X_h) = \int_{x_{h-1}}^{x_h} x \cdot f(x) \, dx = \int_{x_{h-1}}^{x_h} x \cdot \frac{1}{(x_h - x_{h-1})} \, dx
\]

\[
= \frac{(x_h + x_{h+1})}{2} = \mu_h
\]

\[h = 1, 2, 3, ..., (L-1)\]
A variância pode ser obtida como segue:

\[
\sigma^2 = \text{E}(X^2) - [\text{E}(X)]^2 = \frac{1}{(x_h - x_{h-1})} \int_{x_{h-1}}^{x_h} x^2 \, dx - \frac{(x_h + x_{h+1})^2}{4}
\]

\[
\sigma^2 = \frac{(x_h^3 + x_{h+1}^3)}{3(x_h - x_{h-1})} - \frac{(x_h + x_{h+1})^2}{4}
\]

\[
\sigma^2 = \frac{(x_h - x_{h-1})^2}{12}
\]

(16)

Conforme já especificado em (5), a variância da média foi considerada apenas em seu primeiro termo, dado o fator de correção de populações finitas não ter relevância na demonstração, ou seja, \(\sum_{h=1}^{l} \frac{f_h}{n_h} \) deverá ser mínimo e, nesta expressão, será concentrada a solução do problema.

Aplique-se o que está expresso em (1) à distribuição retangular tem-se:

\[
P_h = \int_{x_{h-1}}^{x_h} f(x) \, dx = f_h (x_h - x_{h-1})
\]

(17)

onde:

\(f_h \) = valor constante da função \(f(x) \) para o estrato \(h \).

Observe que se a população for dividida em 10 partes, então
Definição dos limites

\[f_h = \frac{1}{10} \frac{1}{f(x)} \text{ e} \]

\[\rho_h^* = f_h(x_h - x_{h-1}) = \frac{1}{10} \frac{1}{(x_h - x_{h-1})} (x_h - x_{h-1}) \]

\[\rho_h = \frac{1}{10} \]

(18)

O desvio padrão de cada estrato é dado a partir de (16), ou seja

\[q_h = \frac{(x_h - x_{h-1})}{\sqrt{12}} \]

(19)

Então

\[\sum_{h=1}^{L} \frac{1}{p_h} = \sum_{h=1}^{L} f_h(x_h - x_{h-1}) \]

(20)

Para se estabelecer a condição mínima tem-se que

\[\sqrt{12} \sum_{h=1}^{L} \frac{1}{p_h} = \sum_{h=1}^{L} \frac{1}{p_h} (x_h - x_{h-1})^2 \]

Se for usada uma variável adicional \(y_h = f_h x_h \) no intervalo de ocorrência da stratificação, então

\[\sqrt{12} \sum_{h=1}^{L} \frac{1}{p_h} = \sum_{h=1}^{L} (y_h - y_{h-1})^2 \]

(21)

Como o intervalo total, inicialmente foi definido entre os pontos “a” e “b”, fica agora especificado entre \(Y_a \) e \(Y_b \).

Como \(Y_a - Y_b \) é constante ou denominado de K, pode-se observar que a condição mínima para \(\sum_{h=1}^{L} (y_h - y_{h-1})^2 \) é conseguida quando \((y_h - y_{h-1}) \) for constante, ou seja, os estratos devem ter intervalos iguais, produtos de seus volumes pelas suas frequências respectivas.

Nestas condições,

\[\sum_{h=1}^{L} (y_h - y_{h-1})^2 = \sum_{h=1}^{L} f_h(x_h - x_{h-1})^2 \]

então

\[(y_h - y_{h-1})^2 = f_h(x_h - x_{h-1})^2 \]

e

\[(y_h - y_{h-1}) = \sqrt{f_h(x_h - x_{h-1})} \]

(22)
Denominando-se o intervalo para todos os estratos quantitativamente de Iₜ, tem-se que

\[l_h = (y_{h+1} - y_h) = (y_{h+1} - y_0) \]

que somado para todos os estratos resulta

\[\sum_{h=1}^{L} l_h = (y_L - y_0) = K = \int_{y_0}^{y_L} f(x) dx \]

(23)

Como Iₜ é proposto ser constante, então

\[\sum_{h=1}^{L} I_h = LI = K \]

Portanto

\[l_h = \frac{K}{L} = \frac{y_L - y_0}{L} \quad \text{para} \quad h = 1, 2, 3 \ldots \ldots \quad L-1. \]

(24)

Foi a partir desta demonstração que levou DALENIUS & HODGES a propor a solução anteriormente apresentada em (13).

De toda esta concepção até o momento apresentada, há que se discutir alguns pontos de ordem prática, para se chegar a uma solução pertinente para a estratificação de uma população florestal.

Como pode ser observado, não é a proporção \(P_h \) que será usada na estratificação de uma população florestal, e sim a proporção de participação das áreas de plantio em relação à área total da população, ou seja

\[w_h = \frac{A_h}{A} \]

(25)

onde

\[A_h = \text{Área florestal ou reflorestada de cada estrato;} \]

\[A = \text{Área total da população.} \]

Conforme foi admitido por DALENIUS & HODGES, esta proporção deve ser o mais proximamente igual em todos os estratos para se minimizar a variância da média. Tal circunstância ainda que possível, somente será obtida se a população florestal for subdividida em áreas iguais, o que nem sempre acontece, principalmente em áreas florestais naturais. Em florestas plantadas esta condição somente será obtida em florestas reguladas, caso também atualmente bastante incomum.

Resta, pois, se propor que os intervalos dos estratos mantenham uma equidistância volumétrica nos seus limites, o que garantiria uma maior proximidade da solução proposta por DALENIUS & HODGES, para se minimizar a variância da média, uma vez que não se tem disponível a variação das curvas de freqüência ao longo do período de crescimento.
Definição dos limites

Propõe-se, então, uma solução adicional ao procedimento de DALENIUS & HODGES, através da aplicação da função acumulada do volume, tomada em função da variável idade dos povoamentos (I), no caso de florestas plantadas.

A minimização da variação da média será então a resultante da subdivisão da variação total do volume em iguais partes e seguida de localização da correspondente idade desta subdivisão.

Se o volume acumulado na rotação final for denominado de Cum X, então os limites dos estratos serão obtidos como segue:

$$\frac{\text{Cum} X}{L} = X_1$$

onde X_1 é o limite superior do 1^{a} estrato e

$$X_h = X_1 - h$$

onde X_h dará os limites dos subseqüentes estratos para $h = 1,2,\ldots, (L-1)$.

ILUSTRAÇÃO DA METODOLOGIA

Para ilustrar a aplicação desta metodologia, tomou-se uma população de *Pinea Elliottii*, localizada no município de Campos Novos, Santa Catarina.

Os dados são resultado de um experimento e, portanto, permitiram obter a curva ajustada de produção para uma floresta com rotação programada para 35,5 anos, conforme está apresentado no Quadro 1.

Os dados foram ajustados usando-se o modelo de produção de Chapman-Richards generalizado conforme PIENAAR (1965), cuja equação é dada por

$$V \frac{1}{1} \left[A (1-m) - be^{kx(1-m)} \right]$$

onde:

- V = volume;
- A = assintota do modelo;
- $b, k e m$ = coeficientes a estimar;
- x = idade do povoamento.

O ajuste resultou, para os dados do experimento, no que está apresentado no Quadro 2 e ilustrado na Figura 2.

Como a proposta é a de se obter o limite dos estratos em partes iguais para a variação volumétrica, então se forem estruturados 10 estratos tem-se:

Cum $X = 1036,934$ \hspace{1cm} L = 10 e

$$X_1 = \frac{1036,934}{10} = 103,693$$

Os demais limites serão obtidos usando-se a equação (27) e os resultados estão sumarizados no Quadro 3.
Quadro 1 - Dados de produção (m³/ha) de um experimento de *Pinus elliottii* localizado em Campos Novos - Santa Catarina

Table 1 - Actual and predicted volumes (m³/ha) for a slash pine plantation in Brazil

<table>
<thead>
<tr>
<th>idade*</th>
<th>volume observado</th>
<th>volume calculado</th>
<th>idade*</th>
<th>volume observado</th>
<th>volume calculado</th>
</tr>
</thead>
<tbody>
<tr>
<td>age*</td>
<td>actual volume</td>
<td>predicted volume</td>
<td>age*</td>
<td>actual volume</td>
<td>predicted volume</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>18,5</td>
<td>733,8</td>
<td>747,776</td>
</tr>
<tr>
<td>1,5</td>
<td>7,421</td>
<td>19,5</td>
<td>761,9</td>
<td>779,855</td>
<td></td>
</tr>
<tr>
<td>2,5</td>
<td>24,762</td>
<td>20,5</td>
<td>806,4</td>
<td>809,372</td>
<td></td>
</tr>
<tr>
<td>3,5</td>
<td>52,422</td>
<td>21,5</td>
<td>829,4</td>
<td>836,454</td>
<td></td>
</tr>
<tr>
<td>4,5</td>
<td>88,964</td>
<td>22,5</td>
<td>869,6</td>
<td>861,242</td>
<td></td>
</tr>
<tr>
<td>5,5</td>
<td>132,504</td>
<td>23,5</td>
<td>895,7</td>
<td>883,881</td>
<td></td>
</tr>
<tr>
<td>6,5</td>
<td>181,125</td>
<td>24,5</td>
<td>926,3</td>
<td>904,519</td>
<td></td>
</tr>
<tr>
<td>7,5</td>
<td>231,1</td>
<td>25,5</td>
<td>932,1</td>
<td>923,300</td>
<td></td>
</tr>
<tr>
<td>8,5</td>
<td>285,7</td>
<td>26,5</td>
<td>940,7</td>
<td>940,366</td>
<td></td>
</tr>
<tr>
<td>9,5</td>
<td>347,7</td>
<td>27,5</td>
<td>955,85</td>
<td>955,855</td>
<td></td>
</tr>
<tr>
<td>10,5</td>
<td>381,8</td>
<td>28,5</td>
<td>969,89</td>
<td>969,895</td>
<td></td>
</tr>
<tr>
<td>11,5</td>
<td>448,4</td>
<td>29,5</td>
<td>982,60</td>
<td>982,609</td>
<td></td>
</tr>
<tr>
<td>12,5</td>
<td>487,3</td>
<td>30,5</td>
<td>994,12</td>
<td>994,112</td>
<td></td>
</tr>
<tr>
<td>13,5</td>
<td>561,6</td>
<td>31,5</td>
<td>1004,510</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14,5</td>
<td>591,8</td>
<td>32,5</td>
<td>1013,904</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15,5</td>
<td>658,7</td>
<td>33,5</td>
<td>1022,383</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16,5</td>
<td>679,6</td>
<td>34,5</td>
<td>1030,034</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17,5</td>
<td>703,4</td>
<td>35,5</td>
<td>1036,934</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*em anos/in years

A eficiência desta proposta de estratificação somente poderá ser avaliada se uma população florestal for amostrada de forma contínua, e a precisão dos estimadores for comparada com a atual maneira de se separar estratos, ou seja, o estrato coincide com a área de um ano de plantio.

CONCLUSÕES

As seguintes conclusões podem ser apresentadas:

1. Os limites dos estratos na estratificação florestal deve levar em consideração a obtenção do ajuste de uma curva de produção, visando-se conseguir o valor do volume máximo a ser atingido na rotação.

2. Os limites dos estratos devem ser determinados de tal forma a obter iguais intervalos volumétricos, pois desta forma, permitirá a obtenção da mínima variação da média estratificada.

3. Em população de *Pinus*, onde ainda não se conhece a produção final da floresta no ponto de rotação, pode-se estabelecer a estratificação
Quadro 2 - Estimativas não lineares para o modelo de Chapman-Richards generalizado

<table>
<thead>
<tr>
<th># of observations</th>
<th>A</th>
<th>m</th>
<th>b</th>
<th>k</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=20</td>
<td>1098.804</td>
<td>0.619662</td>
<td>14,33775</td>
<td>-0,107763</td>
<td>0,998</td>
</tr>
</tbody>
</table>

![Graph showing volume (m³/ha) vs age (years)](image)

Figura 2 - Apresentação do modelo ajustado de Chapman-Richards generalizado

Fixando-se o primeiro estrato aos 4,5 anos e admitir que o volume atingido nesta idade é uma razoável aproximação da décima parte da produção final. Os limites dos demais estratos podem ser, a partir daí, facilmente demarcados.

4 - A máxima eficiência deste procedimento deverá ser obtida em florestas reguladas, ou seja, nos casos em que se tenha reflorestado iguais áreas anualmente.
Quadro 3 - Estabelecimento da estratificação de acordo com a metodologia proposta

<table>
<thead>
<tr>
<th>estratos</th>
<th>limites (m³/ha)</th>
<th>intervalos de idade</th>
<th>intervalos dos volumes</th>
<th>média volum.estrato</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>strata limits (m³/ha)</td>
<td>age intervals</td>
<td>volume intervals</td>
<td>mean volume/stratum</td>
</tr>
<tr>
<td>1</td>
<td>103,693</td>
<td>0 - 4,5</td>
<td>0 - 88,964</td>
<td>43,892</td>
</tr>
<tr>
<td>2</td>
<td>207,386</td>
<td>4,5 - 6,5</td>
<td>88,964 - 181,125</td>
<td>156,815</td>
</tr>
<tr>
<td>3</td>
<td>31,079</td>
<td>6,5 - 8,5</td>
<td>181,125 - 286,789</td>
<td>258,400</td>
</tr>
<tr>
<td>4</td>
<td>414,772</td>
<td>8,5 - 10,5</td>
<td>286,789 - 394,806</td>
<td>364,750</td>
</tr>
<tr>
<td>5</td>
<td>518,465</td>
<td>10,5 - 12,5</td>
<td>394,806 - 497,935</td>
<td>467,850</td>
</tr>
<tr>
<td>6</td>
<td>622,158</td>
<td>12,5 - 15,5</td>
<td>497,935 - 635,211</td>
<td>604,033</td>
</tr>
<tr>
<td>7</td>
<td>725,851</td>
<td>15,5 - 18,5</td>
<td>635,211 - 747,776</td>
<td>705,660</td>
</tr>
<tr>
<td>8</td>
<td>829,544</td>
<td>18,5 - 21,5</td>
<td>747,776 - 836,454</td>
<td>799,233</td>
</tr>
<tr>
<td>9</td>
<td>932,237</td>
<td>21,5 - 25,5</td>
<td>836,454 - 925,300</td>
<td>898,425</td>
</tr>
<tr>
<td>10</td>
<td>1036,934</td>
<td>25,5 - 35,5</td>
<td>925,300 - 1026,934</td>
<td>995,601</td>
</tr>
</tbody>
</table>

* em anos/in years
* em m³/ha / in m³/ha

BIBLIOGRAFIA CITADA

Trabalho submetido em 01.94 e aceito em 04.96