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Abstract 

Functions describing stem shape allow to determine dimension and volume class, with direct 
application in technical and economic activities in the forest. The aim of this study was to evaluate the 
accuracy of the Trapezoidal and Simpson 1/3 rules in the approximation of numerical integration 
applied to Kozak, Lee et al. and Sharma and Zhang models. The evaluated data were diameter and 
height of sixty Araucaria angustifolia (Bertol.) Kuntze individuals from a planted forest located in 
Caçador, State of Santa Catarina, Brazil. Analysis of results showed the high efficiency of the two 
volume and assortments determination methods compared to the exact value of the numerical 
integration. Kozak and Lee et al. models showed better results compared to Sharma and Zhang 
models. The first, when estimating volume of trunk with bark, applying the Trapezoidal rule, showed 
an error smaller than 10-4, through eight integration intervals, equidistant between sections with 
relative length equal to 20% of the total height. The Simpson 1/3 rule resulted in greater accuracy 
with an error smaller than 10-6, though with complex mathematical structure using six equidistant 
integration intervals. 
Keywords: Taper; stem profile; individual volume. 

 
Resumo 

Aproximação da integral numérica de modelos de forma do tronco para Araucaria angustifólia. 
Funções que descrevem a forma do tronco de árvores permitem determinar classes de dimensão e 
volume com aplicação direta no planejamento das atividades técnicas e econômicas na floresta. Neste 
sentido o presente estudo avaliou a acurácia da regra dos Trapézios e de Simpson 1/3 na aproximação 
da integral numérica aplicada aos modelos de Kozak, Lee et al. e Sharma e Zhang. Os dados 
avaliados incluem diâmetros e alturas relativas de sessenta árvores de Araucaria angustifolia (Bertol.) 
Kuntze provenientes de plantios florestais situados em Caçador, SC. A análise dos resultados mostrou 
alta eficiência dos dois métodos de determinação do volume e dos sortimentos quando comparados 
com o valor exato da integral numérica. Os modelos de Kozak e Lee et al. obtiveram resultados 
superiores quando confrontados com Sharma e Zhang, sendo estes, quando estimado o volume do 
tronco com casca, aplicando a regra do Trapézio, mostrou um erro inferior a 10-4 mediante a oito 
intervalos de integração equidistantes entre secções de comprimento relativo igual a 20% da altura 
total. A regra de Simpson 1/3 propiciou maior acurácia com erro inferior a 10-6, mas com estrutura 
matemática complexa utilizando seis intervalos de integração equidistantes. 
Palavras-chave: Afilamento; perfil do fuste; volume individual. 

 

 

INTRODUCTION 

 
Taper models are mathematical expressions describing the diameter decrease rate over the 

profile of plant stems, whose integration allows the tridimensional reconstruction of the solid of 
revolution associated to the geometric form of the stem or of parts of it. 

These models are widely used in volume estimation, simulation and optimization of assortments, 
between any positions along the stem, with direct application in the definition of silviculture technical 
activities, in harvesting decisions and in economic planning of the forest company.  
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Some mathematical models, like polynomials, are easy to integrate and allow to directly define 
partial and total volumes of the timber (KOZAK et al., 1969; GOULDING; MURRAY, 1976; MAX; 
BURKHART, 1976), however more complex models may be more accurate, but they are not analytically 
integrable (KOZAK, 1988; LEE et al., 2003; SHARMA; ZHANG, 2004), demanding the use of 
numerical integration techniques (THOMAS et al., 2010). 

Numerical integration technique is normally used to determine a defined integral, whose function 
is not available or does not have an analytic solution. Solution of this integral is obtained by 
approximation of a defined integral of the type:  


b

a

dx)x(fI          (1) 

through a sum of the type: 

 


n

1i
ii

b

a

x)x(fWdx)x(fI        (2) 

where: f(xi) = values of the function f(x); 

i1i xxx   ; 

wi = is a numeric weighting value also known as weight function.  
 

The numeric solution of a simple integral is possible by means of the Newton-Cotes formula, 
which applies equally spaced values of f(x); or by the gaussian quadrature formula, which uses different 
spaces determined by a certain property of the orthogonal polynomials. 

Within the formula of Newton-Cotes, Trapezoidal and Simpson 1/3 rules are frequently 
determined starting from an interpolating polynomial, whose approximation is possible because the 
polynomial is easily integrable (POLYANIN; MANZHIROV, 2007). 

The Trapezoidal rule consists in approximating the value of the continuous f(x) function, in the 
interval [a, b], with a first order function, which is the same as approximating any curve to a line. The 
area below f(x) is equivalent to the integral of this function, approximated by the area of the trapezium 
whose width is equal to the interval (b – a), and whose average height is equal to [f(a)+f(b)]/2. 

Calculating the difference ,abx   the formula to calculate integral may be written as: 

 )b(f)a(f
2

h
dx)x(f

b

a

         (3) 

 

This way the composite Trapezoidal rule may be written as: 
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The Simpson’s rule is an approximation method of the continuous function in the interval [a,b] 
by a second order function, which corresponds to approximating any curve to a parabola. The area below 
the function f(x) corresponds to the integral of this function, which has the form: 

 ,)x(f)x(f4)x(f
3

h
dx)x(f 210

b

a

 where 0112 xxxxxh    (5) 

 

This formula is known as Simpson’s 1/3 rule, due to the factor that multiplies h. In this case, at 
least three values of f(xi) are necessary to calculate the integral by the Simpson’s rule. In the notation, 

x0=a, x2=b, and x1 is the point which is equidistant from x0 and x2. For n x  intervals, it may be written: 
 

 )x(f)x(f4)x(f2...)x(f2)x(f4)x(f
3

h
dx)x(f n1n2n210

b

a
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where: n=even number of integration intervals or equivalent, Simpson’s 1/3 rule can be applied only for 

an uneven number of points xi, f(xi). 
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In view of the above, this study had the objective to assess accuracy of Trapezoidal and 
Simpson’s 1/3 rules in the approximation of numerical integration applied to stem taper models of 
Araucaria angustifolia (Bertol.) Kuntze trees.  
 
MATERIAL AND METHODS 
 
Data collection 

The study was conducted using rigorously collected volumetric data from plantations of 
Araucaria angustifolia of the National Forest of Caçador, SC, located in a municipality with the same 
name, whose climate is classified as Cfb in the Köppen system, with average annual temperature of 16.5 
°C and average annual rainfall close to 1600mm (PANDOLFO et al., 2002). 

A total of 60 trees had their diameter with bark measured at 0.1, 0,3, and 1.3 meters from the 
ground, defined as h0.1, h0.3, h1.3 and, starting from these positions, were measured meter by meter (hi), 
until reaching the total height of the trees.   

A group of 2/3 of the sampled trees was randomly separated, representing all the diameter 
dimensions found, to adjust the tamper equations, while the remaining group was kept to validate 
accuracy of the Trapezoidal and Simpson’s 1/3 rules. Biometrical characteristics of the assessed trees 
were summarized in table 1. 
 
Table 1. Biometrical characteristics of araucaria trees. 
Tabela 1. Características biométricas das árvores de araucária. 
Data Variable Frequency Mean  Median   Minimum Maximum Std. Deviation 

Adjust 

d 

40 

23.3 23.5 10.4 40.8 6.9 

h 15.7 16.1 7.8 20.3 2.6 

hc 14.1 14.8 4.1 18.7 3.1 

Validation 

d 

20 

23.5 23.8 13.2 38.0 7.2 

h 15.2 14.9 10.2 18.8 2.3 

hc 13.7 13.6 9.0 17.2 2.5 
d: diameter at breast height, in cm: h: total height, in m; hc: commercial height, in m. 

 
Stem taper models and statistical criteria 

In the statistical analysis of the regression models performed in the study (Table 2), the adjusted 
coefficient of determination (R2aj.), the root mean squared error (Sxy) and the Akaike information criterion 
were considered. Estimate precision of the respective diameters was assessed by tests based of the stratified 
residuals by relative height class (hi/h) resumed in table 3, according to the methodology presented by 
Figuereido-Filho et al. (1996), Scolforo et al. (1998) and Souza (2009). 
 
Table 2. Adjusted stem taper models. 
Tabela 2. Modelos de forma do tronco ajustados. 
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(9) 

h: total height; hi :: relative height at position i. over the stem; d : diameter at breast height; di : relative diameter at position I over the 
stem; β0,..,β7: are parameters of the model; ɛ : residual error; ln : natural logarithm; p : point of inflexion considered at 1.3h. *All the 
models were adjusted by the NLIN procedure, through the method of Maquardt in the statistical system SAS V 9.1 (SAS Institute 
Inc., 2004). 
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Table 3. Statistics to evaluate the precision of relative estimated diameters. 
Tabela 3. Estatísticas para avaliar a precisão das estimativas dos diâmetros relativos. 

Statistics Formula 

Deviation (D) 

  


n

1i
jj Nŷy  

Squared Sum of Relative Residual 
(SSRR)   

2n

1i
jjj yŷy 



 

Residual Percentage (RP) 

  N100.yŷy
n

1i
jjj 



 

:ˆ, jj yy  observed and estimated diameter for the i
th
 plant in the j

th
 position on the stem; N : 

number of observations. *small values of D, SSRR and RP are preferable. 

 
Volume of the stem was obtained integrating the basal areas gi between the limits inferior height 

hi and superior height h2 desired, being the integral written as follows: 
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 ; h2 = height in the upper position of the section; h1= height in the lower position of the 

section. 
 

The area obtained by the f(di) over the i-th heights in the stem was obtained by the two numerical 

integration methods; by the Trapezoidal and Simpson’s 1/3 rule, for a constant interval x , consisting in 
determination of the weight function wi value. 

Approximation of volumes was possible in each section of the stem by equations (4) and (6). The 
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To assess effectiveness of each rule, results were compared to the exact volume of the solid of 

revolution obtained in trees by the f(di) in relative positions corresponding to (h0,1-h0,2h; h0,2h-h0,4h; h0,4h-
h0,6h; h0,6h-h0,8h and h0,8h-h), applying four, six and eight equidistant integration intervals between the 
sections. This procedure was possible through the development of an algorithm in Visual Basic. 
Statistical analysis was performed in the statistical system SAS V.9.1 (SAS Institute Inc., 2004) and 
simulation of numerical integration methodologies was performed with the program MAPLE 13.0 
(MAPLE Inc., 2009). 
 
RESULTS AND DISCUSSIONS 
 

The three models assessed to describe stem profile of araucaria trees showed accuracy higher 
than 98.0%, maximum error between 0.85 and 0.97 m in the estimates, and all the coefficients were 
significant (p<0,0001), according to table 4. Statistical comparison indicated superiority of Kozak models 
(Equation 7) and Lee et al. (Equation 8) compared to Sharma and Zhang models (Equation 9). 
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Table 4. Stem taper models statistics (standard error in parenthesis). 
Tabela 4. Estatísticas de ajustes dos modelos de forma do tronco (erro padrão em parêntesis). 

Eq. 

Estimated coefficients Statistics 

0̂  1̂  2̂  3̂  4̂  5̂  6̂  7̂  R²aj. Syx AIC 

7 
1.1790 0.9234 1.0032 -0.8602 0.1378 -2.3251 1.2946 0.0741 

98.8 0.85 -207.5 
(0.0999) (0.0378) (0.0015) (0.1478) (0.0322) (0.2936) (0.1635) (0.0080) 

8 - 
1.4000 0.9373 1.7367 -2.6575 1.4873 

- - 98.6 0.90 -138.6 
(0.0314) (0.0068) (0.0722) (0.1013) (0.0372) 

9 
0.9800 2.1002 -0.3675 0.1498 

- - - - 98.4 0.97 -42.6 
(0.0068) (0.0047) (0.0375) (0.0405) 

Eq.: equation; :ˆ...ˆ
70   Estimated coefficients. 

 
Analysis of statistics of table 4 allows to infer on behavior of the model in relation to the average, it 

does not guarantee its performance, but its capacity to maintain integrity of predictions. Among the three 
models, no one presented statistical superiority compared to the others in terms of the adjusted coefficient of 
determination and of standard error. Statistical differences were highlighted just by the Akaike criterion. 

Analysis of prediction accuracy of relative diameters over the stem (di), resumed in table 5, 
showed that in the base position of the stems (0.0 < hi/h ≤ 0.2) and (0.2 < hi/h ≤ 0.4), Kozak model 
(Equation 7) showed the best performance in terms of the criteria used to assess accuracy of predictions 
with sum of (Σ = 3). Another important performance was detected by the Lee et al. model (Equation 8), in 
the position (0.0 < hi/h ≤ 0.2), with the greatest sum in terms of accuracy criterions (Σ = 9), indicating 
great instability in prediction of diameters of this portion of the stems. It is worth to highlight that 
stability of predictions in this portion favors its application and quantification of the assortments in trees 
of great dimension, being the region that concentrates the greatest wood volume and value of timber. 

In the intermediate upper position of the stem (0.4 < hi/h ≤ 0.8), the Lee et al model (Equation 8) 
gave the best results, with the lowest sum of indexes (Σ = 4). In this region the Sharma and Zhang model 
(Equation 9) reached the greatest bias estimating diameters over all positions in the stem, with general 
sum of indexes Σ = 37 according to table 5, resulting inadequate to describe stem profile of araucaria trees 
in this study. 

 
Table 5. Residual analysis of stem taper models. 
Tabela 5. Análise residual das equações de forma de tronco. 

Relative height Interval Statistics n. obs. [7] [8] [9] 

0.0 < hi/h ≤ 0.2 

D 
175 

0.0379(1) -0.1404(3) 0.0934(2) 
SSRR 0.1288(1) 0.2029(3) 0.1307(2) 

RP 0.0675(1) -0.8774(3) 0.3908(2) 
Σ  3 9 6 

0.2 < hi/h ≤ 0.4 

D 
126 

-0.0097(1) 0.1385(2) -0.1884(3) 

SSRR 0.1306(1) 0.1330(2) 0.1658(3) 
RP -0.1723(1) 0.5458(2) -0.7503(3) 
Σ  3 6 9 

0.4 < hi/h ≤ 0.6 

D 
124 

-0.2132(3) 0.0132(1) -0.0297(2) 

SSRR 0.2112(3) 0.1826(1) 0.2036(2) 
RP -1.5376(3) -0.1315(2) 0.0622(1) 
Σ  9 4 5 

0.6 < hi/h ≤ 0.8 

D 
123 

0.1199(2) -0.0091(1) 0.4994(3) 

SSRR 0.2790(1) 0.3296(2) 0.6415(3) 
RP 0.7956(2) 0.3312(1) 4.0512(3) 
Σ  5 4 9 

0.8 < hi/h ≤ 1.0 

D 
124 

0.0411(1) 0.2027(3) -0.0791(2) 

SSRR 6.9364(2) 5.5235(1) 8.9938(3) 
RP -3.9775(2) 1.2364(1) -5.4873(3) 
Σ  5 5 8 

Geral Σ  25 28 37 
[7, 8 and 9] : stem taper equations; n. obs.: number of observations; Between brackets the equations Ranking. 
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In relative positions higher than 60% of the total stem height, punctuations of Kozak (Equation 

7) and Lee et al. models (Equation 8) were similar, with general sum of the indexes respectively of  Σ = 

25 and Σ = 28 (Table 5). This analysis showed the importance of residuals based tests in different 

positions along the stem to properly choose the equation. This way, flexibility allied to good performance 

of Kozak (Equation 7) model, in terms of residual criterions, were highlighted, mainly in the estimate of 

the inferior and superior section of the stems, justifying its application for quantification of tree volumes 

and determination of araucaria wood assortments. 

 

Validation test 

During the validation phase, considering the group of twenty trees randomly selected for this 

purpose, and all the positions over the stems simultaneously taken, the Lee et al. (Equation 8) model 
resulted in the lowest sum of scores Σ = 26, followed by Kozak (Equation 7) with Σ = 28 and Sharma and 

Zang (Equation 9) with Σ = 36; whose distribution by D, SSRR and RP criterions, according to classes of 

hi/h, are reported in figure 1. 

The deviations (D) criterion, used to validate predictions, pointed out that the three models have 

general tendency to overestimate diameter values smaller than 60% of the total height. Sharma and Zang 

model (Equation 9) has the bigger tendency to underestimate with (D=0.3476) cm between positions 0.6 

< hi/h ≤ 0.8. 

When verified with the squared sum of relative residual (SSRR) criterion, all models had similar 

tendencies up to 60% of the total height. Starting from this position, the greatest values of the bias were 

found for the Sharma and Zang (Equation 9) model, with (SSRR = 3.3073), followed by Lee et al. 

(Equation 8) with (SSRR = 2.3975), presented in figure 1. The residual percentage (RP) revealed a 
smaller variation tendency in the Lee et al. (Equation 8) model, between the relative positions considered. 

 

 
 

Figure 1. Validation of the equations of stem taper for 20 trees. 
Figura 1. Validação das equações de forma de tronco para as 20 árvores. 
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It is possible to observe that one model was better in determinate positions than in others, 

making a clear selection difficult in terms of stability of predictions in the relative positions, which 

justified the analysis of the Trapezium and Simpson’s 1/3 rules efficiency for the stem taper models 

defined in equations 7 and 8. 

In the procedure shown here, with a 32.2 cm diameter and 17.8 m height tree, using the Kozak 

(Equation 7), shape and volumetric size of sections was calculated by the numerical integration technique 

and rotation of f(x)  (di) function around the x (hi) axis, repeated for all the relative positions of 

20% of the total height, thus generating volume of the solid of revolution in these portions, for each tree 

(Figure 2). 

 
Figure 2. Solid of revolution volume obtained by Kozak (Equation 7) function in 20% height relative 

positions: (Árv.1 - d = 32,2 cm, h = 17,8 m); (a) portion between 0,1 ≤ hi ≤ 3,56 - v = 0,2732 

m³, (b) portion between 3,56 ≤ hi ≤ 7,12 - v = 0,2061 m³, (c) portion between 7,12 ≤ hi ≤ 10 68 

- v = 0,1635 m³, (d) portion between 10,68 ≤ hi ≤ 14,24 - v = 0,1089 m³, (e) portion between 

14,24 ≤ hi ≤ 17,8 - v = 0,0354 m³; (f) Profile total of the tree - v = 0,7871 m³. 

Figura 2. Volume do sólido de revolução obtido pela função de Kozak (Equação 7) em posições relativas 

de 20% da altura: (Árv. 1 - d = 32,2 cm; h = 17,8 m); (a) porção entre 0,1 ≤ hi ≤ 3,56 – v = 

0,2732 m³; (b) porção entre 3,56 ≤ hi ≤ 7,12 – v = 0,2061 m³; (c) porção entre 7,12 ≤ hi ≤ 
10,68- v = 0,1635 m³; (d) porção entre 10,68 ≤ hi ≤ 14,24 – v = 0,1089 m³; (e) porção entre 

14,24 ≤ hi ≤ 17,8 – v = 0,0354 m³; (f) Perfil total da árvore - v = 0,7871 m³. 

 

Difference between exact volume of the solid of rotation and volume calculated by the 

algorithm, developed to approximate the value obtained from numerical integration, gave the error made 

using Trapezoidal and Simpson’s 1/3 rules. These values in tree 1 represented in figure 2 reached an 

absolute error lower than 10-3 estimating the total tree volume, with four equidistant integration intervals, 

applying the Trapezoidal rule. Same with the Simpson’s 1/3 rule, where absolute error was lower than 10-

4, considering all the relative positions along the stem too. 

The same process was applied to all trees of the validation group and also varying the number of 

integration intervals between sections, allowing to compare, in table 6, maximum, mean and minimum 
values of the error found during volume estimation. 

Results indicated that increasing the number of integration intervals between sections caused 

improvements in trees volume predictions. However, for the two tested rules, the model originated 

increasing the number of integration intervals increases its mathematical complexity in prediction, 
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requiring computational tools to apply them in practice. Considering numerical integration rules 

separately, it was determined that, for the same number of integration intervals, Simpson’s 1/3 rule 

reached greatest accuracy compared to Trapezoidal rule. 

 

Table 6. Accuracy of trapezoidal and Simpson 1/3 rules in partial volume estimative by numeric 

integral approximation of stem form models. 

Tabela 6. Acurácia das regras do Trapézio e Simpson 1/3 na estimativa dos volumes parciais pela 

aproximação da integral numérica dos modelos de forma do tronco. 

Integration 

Intervals 

h0.1 - h0.h h0.2h - h0.4h h0.4h - h0.6h h0.6h - h0.8h h0.8h – h 

(6) (8) (6) (8) (6) (8) (6) (8) (6) (8) 

E
rr

o
r 

m
³w

 T
ra

p
ez

o
id

al
 

Eq.7 

Min. -1.3E-03 -6.9E-04 -7.3E-05 -4.1E-05 3.2E-06 1.8E-06 7.4E-06 4.2E-06 -1.6E-07 3.6E-07 

Méd. -4.2E-04 -2.3E-04 -2.7E-05 -1.5E-05 1.7E-05 9.7E-06 3.1E-05 1.7E-05 4.6E-06 3.0E-06 

Máx. -7.3E-05 -4.0E-05 -6.5E-06 -3.6E-06 4.2E-05 2.3E-05 6.9E-05 3.9E-05 9.3E-06 5.8E-06 

            

Eq.8 

Min. -4.1E-04 -2.3E-04 -1.3E-04 -7.4E-05 1.6E-06 9.0E-07 9.7E-06 5.5E-06 -1.5E-04 -8.7E-05 

Méd. -1.6E-04 -8.8E-05 -5.1E-05 -2.9E-05 7.9E-06 4.4E-06 4.8E-05 2.7E-05 -5.8E-05 -3.4E-05 

Máx. -2.9E-05 -1.7E-05 -1.0E-05 -5.8E-06 2.0E-05 1.1E-05 1.2E-04 7.0E-05 -1.2E-05 -6.8E-06 

            

E
rr

o
r 

m
³w

 S
im

p
so

n
 1

/3
 

Eq.7 

Min. -5.8E-06 2.3E-06 -6.4E-07 -2.1E-07 -1.1E-07 -3.6E-08 -3.2E-07 -1.0E-07 -1.6E-07 3.6E-07 

Méd. 5.5E-06 1.1E-05 -2.3E-07 -7.5E-08 -3.7E-08 -1.2E-08 -1.2E-07 -3.8E-08 4.6E-06 3.0E-06 

Máx. 8.9E-06 2.3E-05 -5.1E-08 -1.6E-08 -6.2E-09 -2.0E-09 -2.2E-08 -7.0E-09 9.3E-06 5.8E-06 

            

Eq.8 

Min. -1.1E-06 -3.6E-07 -2.5E-07 -7.8E-08 -3.3E-08 -1.1E-08 -5.3E-07 -1.7E-07 -1.7E-05 -8.8E-06 

Méd. -4.3E-07 -1.4E-07 -9.5E-08 -3.0E-08 -1.3E-08 -4.2E-09 -2.1E-07 -6.5E-08 -6.5E-06 -3.4E-06 

Máx. -7.7E-08 -2.4E-08 -1.9E-08 -6.1E-09 -2.6E-09 -8.4E-10 -4.1E-08 -1.3E-08 -1.3E-06 -6.9E-07 

            Integration Intervals : number of integration intervals (6) and (8) equidistant between sections in the relative positions corresponding 

to (h0.1-h0.2h; h0.2h-h0.4h; h0.4h-h0.6h; h0.6h-h0.8h e h0.8h-h);  

 

Mean errors resulting from the Kozak (Equation 7) model and Lee et al. (Equation 8) for a same 

common rule, as presented in table 6, result from flexibility and quality of the adjustment of each function 

to better describe a certain position in the stem, with now underestimated and then overestimated values. 

However, in all situations, presenting very small errors. 

It is important to highlight that accuracy of each numerical integration technique was directly 

associated to the level of adjustment and precision of the chosen refining functions, which also depend on 
natural variability of data; in other words, variations registered between diameters over the stem depend on 

species, age, location, forest management, and other factors. Another fact to be considered is that, with the 

increase of section lengths, the number of integration intervals must be increased to obtain small errors.  

 

CONCLUSIONS 

 

According to analysis and discussion of the results, the following conclusions were reached: 

 Flexibility and efficiency of Kozak (1988) and Lee et al. (2003) models in prediction of diameters 

(di) with bark over the entire stem of araucaria trees from forest plantations, encourage their use in 

volume predictions and formation of wood assortments.  

 Use of Trapezoidal rule to determine stem volume of araucaria trees, applying eight equidistant 
integration intervals, in sections with length equal to 20% of total height, and use of Simpson’s 1/3 

rule, with six equidistant integration intervals, created errors smaller than 10-4 and 10-6, respectively. 

Simpson’s 1/3 calculation rule increases complexity of its solution increasing the number of 

integration intervals. 

 On a practical point of view, Trapezoidal and Simpson’s 1/3 rules may be used to calculate volume 

of the stem sections with not analytically solvable models. The methodology was efficient and may 

be transferred and used to calculate wood assortments of other forest species. 
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