ANÁLISE DO NÍVEL DE LEGENDA DE CLASSIFICAÇÃO DE AREAS URBANAS EMPREGANDO IMAGENS MULTIESPECTRAIS E HIPERESPECTRAIS COM OS MÉTODOS ÁRVORE DE DECISÃO C4.5 E FLORESTA RANDÔMICA

Camila Souza dos Anjos, Cláudia Maria de Almeida, Lênio Soares Galvão, Carlos Roberto Souza Filho, Marielcio Gonçalves Lacerda, Ronaldo Cristiano Prati

Resumo


Ambientes urbanos representam uma das áreas mais desafiadoras do sensoriamento remoto devido à grande diversidade encontrada nos materiais presentes na sua superfície. O uso de imagens com alta resolução espacial e alta resolução espectral surge como uma alternativa para aplicações urbanas, pois a combinação destas duas características permite uma melhor detecção e discriminação de alvos. O presente trabalho tem um duplo objetivo: i) avaliar dois conjuntos de dados na classificação fina de alvos urbanos para dois níveis de legenda (com 11 e 38 classes de cobertura do solo): um deles composto exclusivamente por uma imagem orbital multiespectral (WV-2) e o outro conjunto composto exclusivamente por uma imagem aerotransportada hiperespectral (SpecTIR), ii) bem como testar o desempenho de dois métodos diferentes de classificação de imagens, Árvore de Decisão C4.5 e Floresta Randômica (Random Forest), para ambos os níveis de legenda. Oito experimentos de classificação foram realizados para atender a tais objetivos de investigar a eficácia dos sensores e dos métodos em dois níveis de detalhamento. Foram obtidas classificações de elevada acurácia. Demonstrou-se para todos os níveis de detalhamento e métodos que as classificações obtidas com dados do sensor SpecTIR apresentaram resultados significantemente superiores aos das classificações com dados do sensor WV-2.

Palavras-chave


WorldView-2, ProSpecTIR V-S, Classificação de Cobertura do Solo Urbano, Métodos Não Paramétricos.

Texto completo:

PDF


Direitos autorais 2017 Camila Souza dos Anjos, Cláudia Maria de Almeida, Lênio Soares Galvão, Carlos Roberto Souza Filho, Marielcio Gonçalves Lacerda, Ronaldo Cristiano Prati

Licença Creative Commons
Esta obra está licenciada sob uma licença Creative Commons Atribuição - NãoComercial 4.0 Internacional.

Boletim de Ciências Geodésicas. ISSN: 1982-2170