Efeito de reservatório marinho na costa do Brasil

Kita Macario, Eduardo Queiroz Alves

Resumo


Em estudos cronológicos de processos ocorridos nos últimos 50 mil anos, a datação de carbono 14 é a abordagem mais utilizada em todo o mundo. Para permitir a correta interpretação das idades obtidas, faz-se necessária a calibração dos resultados com base em um robusto banco de dados produzido pela comunidade científica na área de radiocarbono. A calibração objetiva, principalmente, considerar as variações na produção e distribuição do 14C ao longo do tempo e, no caso do ambiente marinho, corrigir ainda que parcialmente o Efeito de Reservatório Marinho (Marine Reservoir Effect – MRE). De fato, dado que a magnitude do fenômeno aumenta com a profundidade e varia espacialmente em função da dinâmica oceânica, a simples calibração com uma curva marinha global é incapaz de lidar com a real variabilidade do efeito, rendendo resultados não acurados. Desse modo, considera-se também uma
correção local, denominada ΔR, com valores disponíveis na literatura para diversas regiões do globo. Assim, no procedimento que é atualmente o padrão adotado em estudos cronológicos, a correção local para o MRE antecede a calibração de uma idade de 14C marinha com a curva global. Aqui objetivamos
elencar os valores de ΔR disponíveis para a costa brasileira, mostrando o impacto causado na calibração das idades de radiocarbono e a importância desse tipo de correção para estudos cronológicos baseados na datação de 14C de material marinho. Discutimos, finalmente, os problemas causados pela falta ou
pelo uso equivocado dessa correção


Palavras-chave


radiocarbono; calibração; amostras marinhas; datação

Texto completo:

PDF

Referências


Aitken M. J. 1990. Science-based dating in archaeology. Longman Archaeology series. Longman Group, England.

Alves E. Q., Macario K. D., Souza R. C. C. L., Aguilera O., Goulart A. C., Scheel-Ybert R., Bachelet C., Carvalho C., Oliveira F. M., Douka K. Marine Reservoir Corrections on the Southeastern Coast of Brazil: Paired Samples from the Saquarema Shellmound. Radiocarbon, v. 57, p. 517-525, 2015b.

Alves E., Macario K., Souza R., Pimenta A., Douka K., Oliveira F., Chanca I., Angulo R. 2015. Radiocarbon Reservoir corrections on the Brazilian coast from pre-bomb marine shells. Quaternary Geochronology, 29: 30–35.

Angulo R. J., Souza M. C., Reimer P. J., Sasaoka, S. K. 2005. Reservoir effect of the southern and southeastern Brazilian coast. Radiocarbon, 47: 67–73.

Angulo R., Reimer P., Souza M. A., Scheel-Ybert R., Tenório M.C., Disaró S.T., Gaspar M.D. 2007. A tentative determination of upwelling influence on the paleo-surficial marine water reservoir effect in southeastern Brazil. Radiocarbon, 49(03):1255-1259.

Arnold J. R., Libby W. F. 1949. Age Determinations by Radiocarbon Content: Checks with 1014 SampIes of Known Age. Science, 110: 678–680.

Ascough, P. L., Cook G. T., Church M. J., Dugmore A. J., Arge S. V., Mcgovern T. H. 2006. Variability in North Atlantic marine radiocarbon reservoir effects at c. AD 1000. The Holocene, 16(1), pp.131-136.

Ascough, P., Cook G., Dugmore A. 2005. Methodological approaches to determining the marine radiocarbon reservoir effect. Progress in Physical Geography, 29(4), pp.532-547.

Ascough, P., G. Cook, A. Dugmore, J. Barber, E. Higney, and E. M. Scott, Holocene Variations in the Scottish Marine Radiocarbon Reservoir Effect, Radiocarbon, 46(2), 611–620, 2004.

Bastos A. C., Amado-Filho G. M., Moura R. L., Sampaio F. M., Bassi D., Braga J. C. 2016. Origin and sedimentary evolution of sinkholes (buracas) in the Abrolhos continental shelf, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology 462: 101–111.

Bronk Ramsey C. 2008. Deposition models for chronological records. Quaternary Science Reviews, 27: 42-60.

Bronk Ramsey C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon, 51:337-360.

Carvalho C., Macario K., de Oliveira M.I., Oliveira F., Chanca I., Alves E., Souza R., Aguilera O., Douka K. 2015. Potential use of archaeological snail shells for the calculation of local marine reservoir effect. Radiocarbon, 57: 459-467.

Coe, H., Macario K. D., Gomes J., Chueng K., Oliveira F. M., Gomes P. R. S., Carvalho C., Linares R., Alves E. Q., Santos G. M. Understanding Holocene variations in the vegetation of Sao Joao River basin, southeastern coast of Brazil, using phytolith and carbon isotopic analyses. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 415, p. 59-68, 2014.

Craig, H. 1957. The natural distribution of radiocarbon and the exchange time of carbon dioxide between atmosphere and sea. Tellus, 9(1), pp.1-17.

Damon P.E., Lerman J.C., Long A. 1978. Temporal fluctuations of atmospheric 14C: causal factors and implications. Annual Review of Earth and Planetary Sciences, 6(1), pp.457-494.

Dehling H., Van Der Plicht J. 1993. Statistical problems in calibrating radiocarbon dates. Radiocarbon, 35: 239-244.

De Masi M. A. N. 2001. Pescadores coletores da costa sul do Brasil. Pesquisas (Antropologia), 57: 1–136.

Eastoe C. J., Fish S., Fish P., Gaspar M.D., Long, A. 2002. Reservoir corrections for marine samples from the South Atlantic Coast, Santa Catarina state, Brazil. Radiocarbon, 44: 145–148.

Geyh M. A., Grosjean M., Nuñez L., and Schotterer U. 1999. Radiocarbon reservoir effect and the timing of the late-glacial/early Holocene humid phase in the At- acama Desert (northern Chile): Quaternary Research, v. 52, p. 143–153.

Godwin, H. 1962. Half-life of radiocarbon. Nature. 195:984

Goodfriend G. A., and Stipp J. J. 1983, Limestone and the problem of radiocarbon dating of land-snail shell carbonate, Geology, 11(10), 575–7.

Hogg A. G., Hua Q., Blackwell P. G., Niu M., Buck C. E., Guilderson T. P., Heaton T. J., Palmer J. G., Reimer P. J., Reimer R. W., Turney C. S. M., Zimmerman S. R. H. 2013. SHCal13 Southern Hemisphere Calibration, 0-50,000 Years cal BP. Radiocarbon, 55(4).

Hua Q., Barbetti M., Rakowski A. J. 2013. Atmospheric Radiocarbon for the Period 1950-2010. Radiocarbon, 55(4).

Hughen K. A., Baillie M. G., Bard E., Beck J. W., Bertrand C. J., Blackwell P. G., Buck C. E., Burr G. S., Cutler K. B., Damon P. E., Edwards R. l. 2004. Marine04 marine radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon, 46(03):1059-1086.

Inda, H., García-Rodríguez, F., Del Puerto, L., Stutz, S., Figueira, R. C. L., De Lima Ferreira, P.A. and Mazzeo, N., 2016. Discriminating between natural and human-induced shifts in a shallow coastal lagoon: A multidisciplinary approach. Anthropocene, 16:1-15.

Jou R.M., Macario K.D., Carvalho C., Dias R.S., Brum M.C., Cunha F.R., Ferreira C.G., Chanca I.S. 2015. Biogenic fraction in the synthesis of polyethylene terephthalate. International Journal of Mass Spectrometry. 388:65-8.

Korff, S. A., and R. B. Mendell, Variations in Radiocarbon Production in the Earth’s Atmosphere, Radiocarbon, 22(2), 159–165, 1980.

Lal D. 1992. Cosmogenic in situ radiocarbon on the earth. In Radiocarbon After Four Decades (pp. 146-161). Springer New York.

Lal D., Peters B. 1967. Cosmic ray produced radioactivity on the earth. Kosmische Strahlung II/Cosmic Rays II, 551–612.

Levin I., Hesshaimer V. 2000. Radiocarbon – a Unique Tracer of Global Carbon Cycle Dynamics. Radiocarbon, 42: 69–80.

Levin I., Kromer B., Wagenbach D., Måunnich K. O. 1987.Carbon isotope measurement of atmospheric CO2 at a coastal station in Antarctica. Tellus, 39B: 89–95.

Libby W. 1946. Atmospheric helium three and radiocarbon from cosmic radiation. Physical Review, 69(11-12), p.671.

Libby W., Anderson E., Arnold J. 1949. Age determination by radiocarbon content: world-wide assay of natural radiocarbon. Science, 109: 227–228.

Lingenfelter R. E. 1963. Production of 14C by cosmic-ray neutrons. Reviews of Geophysics, 1: 35–53.

Lourenço, R.A., de Mahiques, M.M., Wainer, I.E.K.C., Rosell-Melé, A. and Bícego, M.C., 2016. Organic biomarker records spanning the last 34,800 years from the southeastern Brazilian upper slope: links between sea surface temperature, displacement of the Brazil Current, and marine productivity. Geo-Marine Letters, 36(5):361-369.

Macario K.D., Souza R.C.C.L., Trindade D.C., Decco J., Lima T.A., Aguilera O.A., Marques A.N., Alves E.Q., Oliveira F.M., Chanca I.S., Carvalho C. 2014. Chronological model of a Brazilian Holocene shellmound (Sambaqui da Tarioba, Rio de Janeiro, Brazil). Radiocarbon, 56(2):489-499.

Macario K.D., Souza R.C.C.L., Aguilera O.A., Carvalho C., Oliveira F.M., Alves E.Q., Chanca I.S., Silva E.P., Douka K., Decco J., Trindade D.C., Marques A.N., Anjos R.M., Pamplona F.C. 2015. Marine reservoir effect on the Southeastern coast of Brazil: results from the Tarioba shellmound paired samples. Journal of Environmental Radioactivity, 143: 9-14.

Macario K.D., Alves E.Q., Chanca I.S., Oliveira F.M., Carvalho C., Souza R., Aguilera O., Tenório M.C., Rapagnã L.C., Douka K., Silva E. 2016. The Usiminas shellmound on the Cabo Frio Island: Marine reservoir effect in an upwelling region on the coast of Brazil. Quaternary Geochronology, 35:36-42.

McCormac F. G., Hogg A. G., Blackwell P. G., Buck C. E., Higham T. F. G., Reimer P. J. 2004. SHCal04 Southern Hemisphere calibration, 0–11.0 cal kyr BP. Radiocar- bon 46(3):1087–92.

Mccormac F. G., Reimer P. J., Hogg A. G., Higham T. F. G., Baillie M. G. L. Palmer J., Stuiver M. 2002.Calibration of the radiocarbon time scale for the southern hemisphere: AD 1850–950. Radiocarbon, 44: 641–651.

Milheira R. G., Macario K. D., Chanca I. S., Alves, E. Q. Archaeological Earthen Mound Complex in Patos Lagoon, Southern Brazil: Chronological Model and Freshwater Influence. Radiocarbon, v. 59, p. 195-214, 2017.

Millard A. R. 2014. Conventions for reporting radiocarbon determinations. Radiocarbon, 56: 555-559.

Muller, R. A., Radioisotope dating with a cyclotron, Science, 196(4289), 489–494, 1977.

Nadal de Masi M. A., 2001. Pescadores coletores da costa sul do Brasil. Pesqui. Antropol. 57, 1e136.

Nagai R.H., Martins M.V.A., Burone L., Wainer I.E.K.C., E Sousa S.H.D.M., Figueira R.C.L., Bícego M.C., Alves D.P.V., Dias J.M.A., De Mahiques M.M. 2016. In-phase inter-hemispheric changes in two upwelling regions: The Southeast Brazilian and NW Iberian margins. Journal of Sedimentary Environments, 1(1):43-67.

Palstra S. W., Meijer H. A. 2014. Biogenic carbon fraction of biogas and natural gas fuel mixtures determined with 14C. Radiocarbon, 56: 7-28.

Patrut A., von Reden K. F., Lowry D. A., Mayne D. H., Elder K. E., Roberts M. L., McNichol A. P. 2010. Comparative AMS radiocarbon dating of pretreated versus non-pre- treated tropical wood samples. Nuclear Instruments and Methods in Physics Research B 268(7–8):910–3.

Pessenda L. C. R., Gouveia S. E. M. and Aravena R. 2001.‘Radiocarbon dating of total soil organic matter and humin fraction and its comparison with 14C ages of fossil charcoal’, Radiocarbon 43, 595–601.

Pierri B. S., Fossari T. D., Magalhães A. R. M. 2016. O mexilhão Perna perna no Brasil: nativo ou exótico? Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 68: 404-414.

Reimer P. J., Bard E., Bayliss A., Beck J. W., Blackwell P. G., Bronk Ramsey C., Grootes P. M., Guilderson T. P., Haflidason H., Hajdas I., Hatté C., Heaton T. J., Hoffmann D. L., Hogg A. G., Hughen K. A., Kaiser K. F., Kromer B., Manning S. W., Niu M., Reimer R. W., Richards D. A., Scott E. M., Southon J. R., Staff R. A., Turney C. S. M., Van Der Plicht, J. 2013. IntCal13 and Marine13 Radiocarbon

Age Calibration Curves 0-50,000 Years cal BP. Radiocarbon, 55(4).

Reimer P., Baillie M., Bard E., Bayliss A., Beck J., Blackwell P., Bronk Ramsey C., Buck C., Burr G., Edwards R., Friedrich M., Grootes P., Guilderson T., Hajdas I., Heaton T., Hogg A., Hughen K., Kaiser

K., Kromer B., Mccormac F., Manning S., Reimer R., Richards D., Southon J., Talamo S., C. Turney C., Van Der Plicht J., Weyhenmeyer C. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0-50,000 years cal BP. Radiocarbon, 51:1111–1150.

Reimer P. J., Baillie M. G. L., Bard E., Bayliss A., Beck J. W., Bertrand C. J. H., Blackwell P. G., Buck C. E., Burr G. S., Cutler K. B., Damon P. E., Edwards R. L., Fairbanks R. G., Friedrich M., Guilderson T. P., Hogg A. G., Hughen K. A., Kromer B., Mccormac G., Manning S., Bronk Ramsey C., Reimer R., Remmele S., Southon J., Stuiver M., Talamo S., Taylor F., Van Der Plicht J., Weyhenmeyer C. 2004. IntCal04 Terrestrial Radiocarbon Age Calibration 0-26 cal kyr BP. Radiocarbon, 46:1029–1058.

Santos G. M., Bird M. I., Pillans B., Fifield L. K., Alloway B. V., Chappell J., Hausladen P. A., Arneth A., 2001. Radiocarbon dating of wood using different pre-treatment procedures: application to the chronology of Rotoehu ash, New Zealand. Radiocarbon 43, 239–248.

Siegenthaler U., Sarmiento, J. L. 1993. Atmospheric carbon dioxide and the ocean. Nature, 365:119–125.

Sigman D. M., Boyle E.A. 2000. Glacial/Interglacial Variations In Atmospheric Carbon Dioxide. Nature, 407: 859–869.

Sinha R., Friend P. F., Switsur V. R. 1996. Radiocarbon dating and sedimentation rates in the Holocene alluvial sediments of the northern Bihar plains, India. Geological Magazine 133, 85 – 90.

Stuiver M, Polach H.A. 1977. Discussion reporting of 14C data. Radiocarbon, 19: 355-63.

Stuiver M., Braziunas T.F., Grootes P.M., Zielinski G.A. 1998. Is There Evidence for Solar Forcing of Climate in the GISP2 Oxygen Isotope Record? Quaternary Research, 48: 259–266.

Stuiver M. 1998. High precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon, 40: 1127-1151.

Stuiver M., Reimer P.J., Reimer R.W. 2017. CALIB 7.1 [WWW program] at http://calib.org, accessed 2017-5-21

Stuiver M., Braziunas T. 1993. Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. Radiocarbon, 35: 137–189.

Stuiver M., Pearson G. W., Braziunas T. 1986. Radiocarbon age calibration of marine samples back to 9000 cal yr BP. Radiocarbon, 28: 980–1021.

Trumbore S. Age of soil organic matter and soil respiration: Radiocarbon constraints on belowground C dynamics. Ecol. Appl. 10, 399–411 (2000)

Wang Y., R. Amundson and S. E. Trumbore. 1996. Radiocarbon dating of soil organic matter. Quaternary Research 45:282-288.

Williams R. G., Follows M. J. 2011. Ocean Dynamics and the Carbon Cycle: Principles and Mechanisms. Cambridge University Press.

Yamazaki T., Oda H. 2002. Orbital influence on Earth’s magnetic field: 100,000-year periodicity in inclination. Science (New York, N.Y.), 295: 2435–2438.

Yim W. W-S. 1999: Radiocarbon dating and the reconstruction of late Quaternary sea-level changes in Hong Kong. Quaternary International55,77-91.




DOI: http://dx.doi.org/10.5380/abequa.v9i1.53210

Quaternary Environmental Geosciences